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Preface

The Jahn-Teller (JT) effect continues to be a paradigm for structural instabilities and
dynamical processes in molecules and in the condensed phase. While the basic theo-
rem, first published in 1937, had to await experimental verification for 15 years, the
intervening years saw rapid development, initially in the theoretical arena, followed
increasingly by experimental work on molecules and crystals. The International
Jahn-Teller Symposium was established in the mid-1970s, to foster the exchange of
ideas between researchers in the field. Among the many important developments in
the field, we mention cooperative phenomena in crystals, the general importance of
pseudo-Jahn-Teller (PJT) couplings for symmetry-lowering phenomena in molec-
ular systems, nonadiabatic processes at conical intersections of potential energy
surfaces and extensions of the basic theory in relation to the discovery of fullerenes
and other icosahedral systems.

It is the objective of this volume to provide the interested reader with a collection
of tutorial reviews by leading researchers in the field. These reviews provide a com-
prehensive overview of the current status of the field, including important recent
developments. This volume is targeted at both the non-expert scientist as well as the
expert who wants to expand his/her knowledge in allied areas. It is intended to be
a complement to the existing excellent textbooks in the field. Guided by the idea of
tutorial reviews, we provide here short introductory remarks to the various sections,
as they appear in the table of contents. These are followed by a brief characterization
of the individual papers to make their basic contents, as well as their interrelation,
more transparent.

1. Jahn-Teller Effect and Vibronic Interactions: General Theory

The first set of reviews deals with general formal aspects of the theory, its range of
application and implementation. While the original formulation of the JT theorem
applies to orbitally degenerate electronic states, it was later recognized that simi-
lar mechanisms for structural instabilities are operative also in nondegenerate states
(PJT effect). In the first paper of this volume, Bersuker emphasizes the even more
general implications of the JT and related couplings, by demonstrating that they may
affect ground state structural properties, even when operative in the excited state
manifold (hidden JT effect). This may be associated with spin-crossover effects and
orbital disproportionation. The following two papers (by Ceulemans and Lijnen, and
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by Breza) address group theoretical aspects. A desire has sometimes been expressed
to gain more insight into the nature of the JT theorem than is afforded by the origi-
nal proof (which consists in enumerating all topologically distinct realizations of all
molecular point groups). This goal is indeed achieved in the article by Ceulemans
and Lijnen. Poluyanov and Domcke advocate the use of the microscopic Breit-Pauli
operator for the spin—orbit coupling rather than the phenomenological form often
adopted. They point out that the resulting dependence of the spin—orbit coupling on
the nuclear coordinates can lead to novel effects, of relevance to molecular spectra.
Sato and coworkers present a scheme for analyzing vibronic coupling constants in
terms of densities, which allows them to investigate their local properties and visu-
alize their electronic origin. Finally, an efficient method to compute multimode JT
coupling constants with density functional theory is presented by Zlatar et al. The
approach uses information from the JT distorted structure, which is decomposed
into contributions from the various relevant normal modes.

2. Conical Intersections and Nonadiabatic Dynamics in Molecular Processes

Conical intersections can be considered generalizations of the JT intersections in
less symmetric cases, the latter being also conical in shape owing to the presence of
the linear coupling terms predicted by the JT theorem. In molecular physics, con-
ical intersections have emerged in the past one or two decades as paradigms for
nonadiabatic excited-state dynamics, triggering a plethora of studies of elementary
photophysical and photochemical processes. The article by Blancafort et al. reports
on modern developments in the characterization of conical intersections by ab ini-
tio techniques. Their second-order analysis shows, for example, how to distinguish
between minima and saddle points in the subspace of electronic degeneracy and to
identify photochemically active coordinates. The paper by Bouakline et al. presents
a quantum dynamical analysis of the smallest JT active system, triatomic hydrogen.
This prototypical reactive scattering system is subject to geometric phase effects
which, however, almost completely cancel out in the integral cross section. On the
other hand, strong nonadiabatic couplings/geometric phase effects govern the upper-
cone resonances (Rydberg states) of the system. The papers by Faraji et al. and by
Reddy and Mahapatra present multimode quantum dynamical treatments of JT and
PJT systems with more than two intersecting potential energy surfaces. Pronounced
effects of the couplings in the spectral intensity distribution and in femtosecond (fs)
internal conversion processes are identified. A systematic dependence of the phe-
nomena on the (fluoro) substituents as well as the importance for the photostability
of hydrocarbons is demonstrated. In the article by McKinlay and Paterson, similar
phenomena, including nonadiabatic photodissociation processes and fs pump-probe
spectroscopy, are discussed for transition metal complexes, thus providing a bridge
between the JT effect and photochemistry.

3. Impurities; Spectroscopy of Transition Metal Complexes

Transition metal complexes have represented, for a long time, the archetypical sys-
tem for which the JT effect plays a crucial role, especially with regard to crystal
field splitting and spin—orbit interaction (Ham effect). This affects optical as well
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as EPR spectra of 3d group ions, for example. In the review by Brik and Avram
these are studied for various coordination sites using an effective Hamiltonian for-
malism. Useful relations for the Ham reduction factors are derived, and the JT
parameters obtained from the Ham effect are compared with those obtained from
the JT-distorted minima of the potential energy surfaces. Tregenna-Piggott and Riley
present in their review a very pedagogic introduction to the Exe JT effect, and the
Ham effect as one of its consequences. Applications to various types of spectra
of different transition metal complexes underline the usefulness of the theoretical
concepts. Garcia-Fernandez et al. address the question of structural instabilities of
doped materials and their type and origin. They argue, and present convincing evi-
dence, that these are frequently not due to differences in atomic sizes (as is often
assumed in the literature) but rather to vibronic coupling, that is, the PIT effect.
Finally in their review, Reinen and Atanasov analyze in their review, the effects of
JT coupling on the changes from a high-spin to a low-spin electronic ground state
in hexacoordinate fluoride complexes of Mn(III), Co(IlI), Ni(III) and Cu(III), an
aspect which is frequently ignored in the literature on spin-crossover systems. In
particular, the strong links to coordination and solid state chemistry are set out in
this contribution.

4. Fullerenes and Fullerides

In the mid 1980s and subsequent years, the discovery of Cgg and other fullerenes
opened a route to the analysis of JT systems with higher than threefold degenera-
cies (G and H irreducible representations). This led to substantial developments
from the point of view of pure theory as well as applications. This volume includes
two important papers in this area. Structural aspects of fulleride salts, i.e. fullerene
anions in various charge states in the solid state, are covered by Klupp and Kamaras.
Evidence, based mostly on infrared spectroscopy, is used to discuss issues including
static vs. dynamic JT effect, unusual phases, and relation to conductivity. The review
by Hands et al. addresses the further complication of fullerenes being adsorbed on
surfaces. The lowering in symmetry due to the surface interactions is considered, as
well as the rather slow time-scale of the experimental technique of scanning tunnel-
ing microscopy proposed. Detailed simulations of the corresponding images shed
useful light on their possible significance in establishing the presence and shape of
JT distortions.

5. Jahn-Teller Effect and Molecular Magnetism

Molecular magnetism concerns the synthesis, characterization and application of
molecular-based materials that possess the typical properties of magnets — slow
relaxation, quantum tunneling and blocking of the magnetization at low temper-
atures (single molecular magnets (SMM)). It is an interdisciplinary research field
which requires the combined efforts (cooperation) of chemists, molecular and solid
state physicists, as well as theoreticians (quantum chemists). This is the point where
the JT effect enters into the game. The magnetic properties of SMMs are affected by
the structural influences caused by vibronic coupling and these influences are further
manifested in the optical band shapes, the interactions between magnetic molecules
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with degenerate ground states (cooperative JT effect), and the dynamical JT and PJT
effects (which impact upon the magnetic relaxation and spin coherence times). In
their review, Tsukerblat, Klokishner and Palii address these points in spin-frustrated
systems with threefold symmetry, mixed valence systems, photoswitchable spin
systems, and magnetic molecules which undergo tautomeric transformations lead-
ing to long-lived (metastable) states. The Jahn-Teller effect plays a crucial role in
magnetic clusters built up from magnetic centers in orbitally degenerate ground
states. Using a combination of ligand field theory and density functional theory
Atanasov and Comba show how small structural changes due to Jahn-Teller activ-
ity and/or structural strains induce a dramatic lowering of the magnetic anisotropy.
The same authors also show for the first time, using cyanide-bridged systems as
model examples, how one can deduce the parameters of the spin Hamiltonian from
first principles.

6. The Cooperative Jahn-Teller Effect and Orbital Ordering

It has long been recognized for JT crystals, i.e., crystals containing a JT center in
each unit cell, that the intrinsic instability of JT complexes against distortions may
give rise to an effective interaction between JT ions, mediated by the surrounding
ligands of the ions. Below a critical temperature, this interaction may lead to the
cooperative JT effect (CJTE), a structural phase transition where the whole crystal
distorts. There are two main approaches to the CJTE, differing in the form of the
effective ion—ion interaction. Kaplan’s review is partly based on Kanamori’s treat-
ment, who generated this interaction by the transformation from local vibrational
modes to phonons. This treatment, in combination with the canonical Hamiltonian
shift transformation and a subsequent mean-field approximation, is the most popu-
lar approach to the CJTE. Although this concept, also referred to as virtual phonon
exchange, has led to impressive results for some simpler systems, it cannot be
applied to systems characterized by the Exe JT effect because of insurmountable
technical difficulties. Such systems are conveniently treated by means of an alter-
native approach, developed by Thomas and co-workers and described in Polinger’s
article. This method assumes a bilinear lattice-dynamical interaction between the
normal coordinates belonging to nearest-neighbor cells. However, the main empha-
sis of this article lies in a detailed comparison of the CJTE with the orbital-ordering
(or Kugel-Khomskii) approach. A typical example of the orbital-ordering approach
is presented in Ishihara’s review. The main emphasis of this article is on the intrinsic
orbital frustration effect, meaning that no orbital configuration exists, whereby the
bond energies in all equivalent directions are simultaneously minimized. It is shown
that the orbital frustration effect leads to several nontrivial phenomena in strongly
correlated systems with orbital degrees of freedom. The influence of the CJITE and
of JT impurities on material properties is elucidated in the reviews by Gudkov and
Lucovsky. The review by Gudkov deals mainly with the influence of JT impurities
on the elastic moduli and ultrasonic wave attenuation in diluted crystals. The elastic-
wave technique broadens the facilities of JT spectroscopy in its low-energy part and
provides new information, mostly about the properties of the ground state and its
tunneling splitting. That the JT effect even plays an important role in semiconduc-
tor technology is convincingly demonstrated in Lucovsky’s article. Here the CITE
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manifests itself in the group IVB transition-metal oxides, designed as replacement
gate dielectrics for advanced metal-oxide-semiconductor devices.

7. Jahn-Teller Effect and High-Tc Superconductivity

The explanation of high-temperature superconductivity (HTSC) in copper oxides
(cuprates) is one of the most difficult problems in modern physics. The undoped
cuprates are antiferromagnetic Mott insulators, where the insulating behavior is
caused by a strong on-site Coulomb repulsion. HTSC arises upon hole doping,
whereupon the originally immobile electrons in the half-filled conduction band
become mobile. The basic problem is to find the proper mechanism for the formation
of Cooper pairs, the necessary ingredient of all superconductors. There are mainly
two antagonistic views on the problem amounting to the question of whether the
participation of phonons is indispensable for the pair formation or whether the elec-
trons alone can do the job. The review by Miranda Mena tries to answer this question
by gathering all available evidence in favor of electron—phonon mechanisms such as
(bi)polarons and JT (bi)polarons. Seen in this perspective, the article gives a fair
account of the state of the art in HTSCs. A more detailed theory of JT polarons
and bipolarons with application to the fullerene superconductors is presented in the
article by Hori and Takada. In addition to offering a thorough mathematical analy-
sis, the authors also make the interesting observation that, for stronger coupling, IT
polarons acquire a smaller effective mass than the Holstein polaron. Such a reduc-
tion of the polaron effective mass is essential for the existence of superconductivity,
as the polaron mass increases with increasing coupling so that, for sufficiently strong
coupling, the polaron becomes immobile and cannot contribute to the electric cur-
rent. These remarks apply, in particular, to Koizumi’s work, which proposes that the
doped holes become small polarons and not, as is supposed in all electron-based the-
ories of HTSC, constituents of Zhang-Rice singlets. As the mobility of the polarons
is very limited, a novel mechanism is required to facilitate a macroscopic electric
current. The author solves the problem by a loop current generation around each spin
vortex due to the spin Berry phase. The macroscopic current is then the collection
of all these loop currents.

This set of tutorial reviews has been created on the occasion of the 19th Inter-
national Jahn-Teller Symposium, held in Heidelberg, University Campus, 25-29
August 2008. The volume does not, however, reflect directly the conference con-
tents. Full coverage of the 46 oral presentations given at the meeting (plus a similar
number of posters) was not attempted. Conversely, the 27 papers collected here go
into considerably more depth than would be normal for a proceedings volume. We
hope that this volume constitutes a valuable reference, for beginners and experts
alike.

Heidelberg H. Koppel
Stuttgart H. Barentzen
Baltimore D.R. Yarkony

May 2009



Acknowledgments

D. R. Yarkony acknowledges the support of NSF grant CHE-0513952. The editors
are indebted to M. Atanasov for helpful comments.

xi



Contents

PartI Jahn-Teller Effect and Vibronic Interactions: General Theory

Recent Developments in the Jahn-Teller Effect Theory....................... 3
Isaac B. Bersuker

Electronic Degeneracy and Vibrational Degrees of Freedom:
The Permutational Proof of the Jahn-Teller Theorem ........................ 25
Arnout Ceulemans and Erwin Lijnen

Group-Theoretical Analysis of Jahn-Teller Systems........................... 51
Martin Breza

Spin-Orbit Vibronic Coupling in Jahn-Teller and Renner
1 L 175 77
Leonid V. Poluyanov and Wolfgang Domcke

Vibronic Coupling Constant and Vibronic Coupling Density ................. 99
Tohru Sato, Ken Tokunaga, Naoya Iwahara, Katsuyuki Shizu,
and Kazuyoshi Tanaka

A New Method to Describe the Multimode Jahn-Teller Effect
Using Density Functional Theory ...................coooiiiinnineen, 131
Matija Zlatar, Carl-Wilhelm Schldpfer, and Claude Daul

Part I Conical Intersections and Nonadiabatic Dynamics
in Molecular Processes

Second-Order Analysis of Conical Intersections: Applications

to Photochemistry and Photophysics of Organic Molecules................... 169
Lluis Blancafort, Benjamin Lasorne, Michael J. Bearpark,

Graham A. Worth, and Michael A. Robb

xiii



xiv Contents

Influence of the Geometric Phase and Non-Adiabatic

Couplings on the Dynamics of the H+H; Molecular System ................. 201
Foudhil Bouakline, Bruno Lepetit, Stuart C. Althorpe,

and Aron Kuppermann

Multi-Mode Jahn-Teller and Pseudo-Jahn-Teller Effects
inBenzenoid Cations ...............ccooviiiiiiiiiiiiiiii e 239
Shirin Faraji, Etienne Gindensperger, and Horst Képpel

On the Vibronic Interactions in Aromatic Hydrocarbon
Radicals and Radical Cations..................cccoeiiiiiiiiiiiiiniii .., 277
V. Sivaranjana Reddy and S. Mahapatra

The Jahn-Teller Effect in Binary Transition Metal Carbonyl
L801) 1) L (U 311
Russell G. McKinlay and Martin J. Paterson

Part III Impurities; Spectroscopy of Transition Metal Complexes

Jahn-Teller Effect for the 3d Ions (Orbital Triplets in a Cubic
Crystal Field) ..o et eeea e 347
M.G. Brik, N.M. Avram, and C.N. Avram

Constructing, Solving and Applying the Vibronic Hamiltonian .............. 371
Philip L.W. Tregenna-Piggott and Mark J. Riley

Instabilities in Doped Materials Driven by Pseudo Jahn-Teller

MechaniSImS . ...... .ottt i et aanns 415
P. Garcia-Ferndndez, A. Trueba, J.M. Garcia-Lastra, M. T. Barriuso,

M. Moreno, and J.A. Aramburu

The Influence of Jahn-Teller Coupling

on the High-Spin/Low-Spin Equilibria of Octahedral ML

Polyhedra (M"' : Mn — Cu), with NiF¢>~ as the Model Example ............ 451
D. Reinen and M. Atanasov

Part IV Fullerenes and Fullerides

Following Jahn-Teller Distortions in Fulleride Salts
by Optical SPectroSCOPY .........cociviriiriiiiiieii e eiieeneeanens 489
G. Klupp and K. Kamaris



Contents XV

Jahn-Teller Effects in Molecules on Surfaces with Specific

Application to Cgp .........ovvviniiniiiiiii e 517
Ian D. Hands and Janette L. Dunn, Catherine S.A. Rawlinson,

and Colin A. Bates

Part V  Jahn-Teller Effect and Molecular Magnetism

Jahn-Teller Effect in Molecular Magnetism: An Overview................... 555
Boris Tsukerblat, Sophia Klokishner, and Andrew Palii

The Effect of Jahn-Teller Coupling in Hexacyanometalates
on the Magnetic Anisotropy in Cyanide-Bridged Single-

Molecule Magnets..........c.o.eveviininineiiieiiiiiiiiii e, 621
Mihail Atanasov and Peter Comba

Part VI The Cooperative Jahn-Teller Effect and Orbital Ordering

Cooperative Jahn-Teller Effect: Fundamentals, Applications,

g 072 T 1 1 S O PP 653
Michael Kaplan

Orbital Ordering Versus the Traditional Approach

in the Cooperative Jahn-Teller Effect: A Comparative Study ................ 685
Victor Polinger

Frustration Effect in Strongly Correlated Electron Systems
with Orbital Degree of Freedom....................ooiiiinnen. 727
Sumio Ishihara

Ultrasonic Consequences of the Jahn-Teller Effect ............................ 743
Vladimir Gudkov

Long Range Cooperative and Local Jahn-Teller Effects
in Nanocrystalline Transition Metal Thin Films........................c 767
Gerald Lucovsky

Part VII Jahn-Teller Effect and High-Tc Superconductivity

Jahn-Teller Polarons, Bipolarons and Inhomogeneities.
A Possible Scenario for Superconductivity in Cuprates ....................... 811
Joaquin Miranda Mena



Xvi Contents

Polarons and Bipolarons in Jahn-Teller Crystals .....................cco..... 841
Chishin Hori and Yasutami Takada

Vibronic Polarons and Electric Current Generation by a Berry
Phase in Cuprate Superconductors .................ccooviiiiiiiiiiininiinn.., 873
Hiroyasu Koizumi



List of Contributors

Stuart C. Althorpe Department of Chemistry, University of Cambridge,
Cambridge CB2 1EW, UK

J.A. Aramburu Departamento de Ciencias de la Tierra y Fisica de la
Materia Condensada, Universidad de Cantabria, 39005 Santander, Spain,
antonio.aramburu@unican.es

Mihail Atanasov Institute of General and Inorganic Chemistry, Bulgarian
Academy of Sciences, Acad.Georgi Bontchev Str., Bl.11, 1113 Sofia, Bulgaria,
mihail.atanasov @aci.uni-heidelberg.de

and

Anorganisch-Chemisches Institut, Universitiit Heidelberg, Im Neuenheimer Feld
270, 69120 Heidelberg, Germany

and

Chemistry Department, Philipps-University, Hans-Meerwein-Strasse, 35043
Marburg, Germany

C.N. Avram Department of Physics, West University of Timisoara,
Bvd.V. Parvan 4, Timisoara 300223, Romania

N.M. Avram Department of Physics, West University of Timisoara,

Bvd. V. Parvan 4, Timisoara 300223, Romania

and

Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest,
Romania

M.T. Barriuso Departamento de Fisica Moderna, Universidad de Cantabria,
39005 Santander, Spain

Colin A. Bates School of Physics and Astronomy, University of Nottingham,
Nottingham, NG7 2RD, UK

Michael J. Bearpark Department of Chemistry, Imperial College London,
London SW7 2AZ, UK

Isaac B. Bersuker Institute for Theoretical Chemistry, The University
of Texas at Austin, Austin, TX 78712, USA, bersuker@cm.utexas.edu

Xvii



xviii List of Contributors

Lluis Blancafort Institut de Quimica Computacional and Parc Cientific i
Tecnologic, Universitat de Girona, 17071 Girona, Spain, lluis.blancafort @udg.edu

Foudhil Bouakline Department of Chemistry, University of Cambridge,
Cambridge CB2 1EW, UK, foudhil.bouakline @googlemail.com

Martin Breza Department of Physical Chemistry, Slovak Technical University,
81237 Bratislava, Slovakia, martin.breza@stuba.sk

M.G. Brik Institute of Physics, University of Tartu, Riia Street 142, 51014 Tartu,
Estonia

Arnout Ceulemans Department of Chemistry and INPAC Institute for Nanoscale
Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F,
3001 Leuven, Belgium, Arnout.Ceulemans@chem.kuleuven.be

Peter Comba Anorganisch-Chemisches Institut, Universitiit Heidelberg,
Im Neuenheimer Feld 270, 69120, Heidelberg, Germany,
peter.comba@aci.uni-heidelberg.de

Claude Daul Department of Chemistry, University of Fribourg, Fribourg,
Switzerland, claude.daul @unifr.ch

Wolfgang Domcke Department of Chemistry, Technische Universitit Miinchen,
85747 Garching, Germany, wolfgang.domcke @ch.tum.de

Janette L. Dunn School of Physics and Astronomy, University of Nottingham,
Nottingham, NG7 2RD, UK, Janette.Dunn@nottingham.ac.uk

Shirin Faraji Theoretische Chemie, Universitit Heidelberg, Im Neuenheimer
Feld 229, 69120 Heidelberg, Germany

P. Garcia-Fernandez Departamento de Ciencias de la Tierra y Fisica de la
Materia Condensada, Universidad de Cantabria, 39005 Santander, Spain

J.M. Garcia-Lastra Departamento de Fisica de Materiales, Facultad de Quimicas,
Universidad del Pais Vasco, 20018 San Sebastidn, Spain

Etienne Gindensperger Laboratoire de Chimie Quantique, Institut de Chimie
UMR 7177, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, B.P. 1032,
67070 Strasbourg Cedex, France

Vladimir Gudkov Ural State Technical University, 19, Mira st., Ekaterinburg
620002, Russia, gudkov @imp.uran.ru

Ian D. Hands School of Physics and Astronomy, University of Nottingham,
Nottingham, NG7 2RD, UK

Chishin Hori Institute for Solid State Physics, University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan, chori @issp.u-tokyo.ac.jp

Sumio Ishihara Department of Physics, Tohoku University, Sendai 980-8578,
Japan, ishihara@cmpt.phys.tohoku.ac.jp



List of Contributors Xix

Naoya Iwahara Department of Molecular Engineering, Graduate School
of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan,
iwaharanaoya@t03.mbox.media.kyoto-u.ac.jp

K. Kamaras Research Institute for Solid State Physics and Optics, Hungarian
Academy of Sciences, Budapest, Hungary, kamaras @szfki.hu

Michael Kaplan Chemistry Department, Simmons College, 300 The Fenway,
Boston, MA 02115, USA, michael.kaplan@simmons.edu

and

Physics Department, Simmons College, 300 The Fenway, Boston, MA 02115, USA

Sophia Klokishner Institute of Applied Physics of the Academy of Sciences
of Moldova, Academy str. 5, Kishinev, 2028, Moldova

G. Klupp Research Institute for Solid State Physics and Optics, Hungarian
Academy of Sciences, Budapest, Hungary, klupp@szfki.hu

Hiroyasu Koizumi Institute of Materials Science, University of Tsukuba,
Tsukuba, Ibaraki 305-8573, Japan, koizumi@ims.tsukuba.ac.jp

Horst Koppel Theoretische Chemie, Universitit Heidelberg, Im Neuenheimer
Feld 229, 69120 Heidelberg, Germany, Horst. Koeppel @pci.uni-heidelberg.de

Aron Kuppermann Division of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, CA 91125, USA, aron@caltech.edu

Benjamin Lasorne CTMM, Institut Charles Gerhardt, UMR 5253, CC 1501,
Université Montpellier IT, 34095 Montpellier Cédex 5, France

Bruno Lepetit Université de Toulouse, UPS, Laboratoire Collisions Agrégats
Réactivité, IRSAMC, 31062 Toulouse, France

and

CNRS, UMR 5589, 31062 Toulouse, France, bruno.lepetit@irsamc.ups-tlse.fr

Erwin Lijnen Department of Chemistry and INPAC Institute for Nanoscale
Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F,
3001 Leuven, Belgium, Erwin.Lijnen@chem.kuleuven.be

Gerald Lucovsky Department of Physics, North Carolina State University,
Raleigh, NC 27695-8202, USA, lucovsky @ncsu.edu

S. Mahapatra School of Chemistry, University of Hyderabad, Hyderabad-500046,
India, smsc @uohyd.ernet.in

Russell G. McKinlay School of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, Scotland, EH14 4AS

Joaquin Miranda Mena Departamento de Fisica Aplicada, CINVESTAV-Mérida,
Mérida, 97300, México, miranda.joaquin@ gmail.com

M. Moreno Departamento de Ciencias de la Tierra y Fisica de la Materia
Condensada, Universidad de Cantabria, 39005 Santander, Spain



XX List of Contributors

Andrew Palii Institute of Applied Physics of the Academy of Sciences of
Moldova, Academy str.5, Kishinev 2028, Moldova

Martin J. Paterson School of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, Scotland, EH14 4AS, m.j.paterson@hw.ac.uk

Victor Polinger Department of Chemistry, University of Washington, Seattle,
WA 98195-17001, USA

and

Bellevue College, 3000 Landerholm Circle SE, Science Div., L-200, Bellevue, WA
98007, USA, polinv@u.washington.edu

Leonid V. Poluyanov Institute of Chemical Physics, Russian Academy
of Sciences, Chernogolovka, Moscow 14232, Russian Federation

Catherine S.A. Rawlinson School of Physics and Astronomy, University
of Nottingham, Nottingham, NG7 2RD, UK

D. Reinen Chemistry Department, Philipps-University, Hans-Meerwein-Strasse,
35043 Marburg, Germany, reinen @chemie.uni-marburg.de

Mark J. Riley School of Chemistry and Molecular Biosciences, University
of Queensland, St. Lucia, QLD, 4072, Australia, m.riley @uq.edu.au

Michael A. Robb Department of Chemistry, Imperial College London, London
SW72AZ, UK

Tohru Sato Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto,
Japan

and

Department of Molecular Engineering, Graduate School of Engineering, Kyoto
University, Nishikyo-ku, Kyoto 615-8510, Japan, tsato@scl.kyoto-u.ac.jp

Carl-Wilhelm Schlipfer Department of Chemistry, University of Fribourg,
Fribourg, Switzerland, Carl-Wilhelm.Schlaepfer@unifr.ch

Katsuyuki Shizu Department of Molecular Engineering, Graduate School
of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan,
katsuyuki@21emon.mbox.media.kyoto-u.ac.jp

V. Sivaranjana Reddy School of Chemistry, University of Hyderabad,
Hyderabad-500046, India, ch05ph07 @uohyd.ernet.in

Yasutami Takada Institute for Solid State Physics, University of Tokyo, 5-1-5
Kashiwanoha, Kashiwa, Chiba 277-8581, Japan, takada@issp.u-tokyo.ac.jp

Kazuyoshi Tanaka Department of Molecular Engineering, Graduate School
of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan,
a51053 @sakura.kudpc.kyoto-u.ac.jp

Ken Tokunaga Research and Development Center for Higher
Education, Kyushu University, Ropponmatsu, Fukuoka 810-8560, Japan,
tokunaga@rche.kyushu-u.ac.jp



List of Contributors XXi

Philip L.W. Tregenna-Piggott Laboratory for Neutron Scattering, ETH
Ziirich and Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland,
philip.tregenna@psi.ch

A. Trueba Departamento de Ciencias de la Tierra y Fisica de la Materia
Condensada, Universidad de Cantabria, 39005 Santander, Spain

Boris Tsukerblat Department of Chemistry, Ben-Gurion University of the Negeyv,
PO Box 653, 84105 Beer-Sheva, Israel, tsuker@bgu.ac.il

Graham A. Worth School of Chemistry, University of Birmingham, Egbaston,
Birmingham B15 2TT, UK

Matija Zlatar Department of Chemistry, University of Fribourg, Fribourg,
Switzerland

and

Center for Chemistry, IHTM, University of Belgrade, Belgrade, Serbia,
matija.zlatar@unifr.ch,matijaz@chem.bg.ac.rs



Polarons and Bipolarons in Jahn-Teller
Crystals

Chishin Hori and Yasutami Takada

Abstract A review is made on the developments in the last two decades in the
field of the Jahn-Teller effect on itinerant electrons in Jahn—Teller crystals. Special
attention is paid to the current status of the researches on the fullerene supercon-
ductors and the manganite perovskites exhibiting the colossal magnetoresistance.
Present knowledge about the polarons and bipolarons in the typical Jahn-Teller
model systems is also summarized, together with some original results of our own.

1 Introduction

Physics and chemistry of the Jahn-Teller (JT) effect started from the theory in
1930s [1], investigating structural instabilities of high-symmetry configurations in
molecules. The theory has been developed further and sophisticated in the next sev-
eral decades to provide a very general quantum-mechanical framework for treating
a particular type of electron-vibrational (or electron—phonon) coupling in molecules
or solids in which two or more orbitally degenerate (or pseudodegenerate) electronic
states are mixed nonadiabatically through ionic (or lattice) vibrational modes.

Due to its intrinsic complexity arising from the orbital multiplicity, the researches
in this field have been almost exclusively concerned with the JT effect in rather
simple systems like molecules, small clusters, and a single JT impurity center in
solids in which itinerant electrons do not play an important role [2,3]. Even if the JT
crystals, in which an infinite number of such JT centers occupy regular positions in
a lattice, are considered in the context of the cooperative JT effect, relevant electrons
in the system have usually been assumed to be localized [4].

A surge of a new sort of interest in the JT effect occurred in the late 1980s
when high-temperature superconductivity (HTSC) was discovered in the copper
oxides [5]. Because these compounds may be regarded as a class of the JT crys-
tals, people began to pay much attention to the JT effect on itinerant electrons. In
1990s the interest in the JT effect in metals was intensified by both the discovery
of superconductivity in the alkali-metal-doped fullerides of the type A3Cgo with
A = K, Rb, Cs (or their combinations) [6] and the subsequent one of the colossal
magnetoresistance (CMR) in the manganite perovskites [7, 8].

841
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As for the current status of the researches on these materials, a rather compre-
hensive review was given by Bersuker in Sect. 8.4 of [3] from the standpoint of
elucidating the roles of the JT effect. Therefore it would not be necessary to reiterate
a similar kind of review here, particularly for the issue of HTSC for which Bersuker
made a very detailed account, but it might be appropriate for us to make some
supplementary comments or remarks on the issues of the CMR and the fullerene
superconductors from our perspective that is reflecting the experience of one of the
authors (Y.T.) who was engaged in the studies on those issues in 1990s.

The CMR is a technical term to indicate the phenomenon of a strong variation
of the electric resistance with the change of applied magnetic fields, as observed,
for example, in La;_,Ca,MnOs3 with x in the range between 0.2 and 0.4. The con-
duction electrons in these compounds are composed of the Mn e, orbitals with the
density of 1 — x electrons per Mn ion, implying that the system can be regarded
as a JT crystal of the canonical E ® e type. It is widely believed that the double-
exchange (DE) mechanism associated with the Hund’s-rule coupling between the
Mn 13, localized core spins and the mobile e, electrons [9-11] plays a crucial
role in making a qualitatively correct explanation of the CMR, but an important
claim was made that the JT coupling was also needed for its quantitatively accu-
rate description [12]. This claim has been confirmed by both experiment using
the state-of-the-art photospectroscopy [13] and theory based on the first-principles
calculation of the electronic band structure and the electron—phonon coupling con-
stant [14, 15]. Thus the CMR can be regarded as the outcome of the interplay among
spin, charge, orbital, and phonon degrees of freedom, as emphasized in several
review articles on the manganites [16-22].

This complicated interplay has made the physics of manganites very rich and we
can enumerate several fascinating proposals of new physics in relation to these com-
pounds, including (1) the cooperative JT effect mediated by electron hopping rather
than by phonons (or lattice distortions) [14], (2) the phase-separation scenario for
the CMR in the manganites, in which the Coulomb correlation is considered to
be a more important competitor with the DE mechanism than the electron-phonon
coupling [17], (3) the concept of the complex-orbital ordering, in which linear
superposition of basic orbitals, d,2_,2 and d32_,2, with complex coefficients is
suggested [23], (4) the topological-phase scenario for the formation of the stripe
and the charge-ordered states, in which the key notion is the winding number (the
Chern integers) associated with the Berry-phase connection of an e, electron par-
allel transported through the JT centers along zigzag one-dimensional paths in an
antiferromagnetic environment of the f2; core spins [24, 25), and (5) the concept
of the geometric energy which is defined as the difference in energy caused by
the change in the winding number [26]. This is a concept proposed in analogy to
the exchange energy (or the spin singlet-triplet energy splitting) in the case of spin
degrees of freedom.

This complication in the manganites, however, has also a negative side, because
it obscures the actual role of the JT effect on the CMR. In fact, what is actually
confirmed so far is that the conduction electron should not be treated as a bare band
electron but a rather small polaron in order to obtain the CMR in the experimentally
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observed magnitude, if we try to explain the CMR in terms of a one-conduction-
electron picture. This polaron motion can be realized not only through the E ®
e coupling (or the off-diagonal vibrational coupling in degenerate electronic-state
representation) but also through the conventional Holstein model [27] in which a
nondegenerate electronic orbital (A) is coupled to a nondegenerate non-JT phonon
(@), leading to the “A ® a” problem with the diagonal vibrational coupling. In this
respect, we do not know to what extent the JT effect is an indispensable factor in
bringing about the CMR. In order to give a definite answer to this question, we
need to know, first of all, more detailed information about the similarities and the
differences in the polaronic nature between the £ ® e JT and the A ® a Holstein
models. Section 3 of this article addresses this issue by comparing the results of the
one-electron problem in various theoretical models, each of which is described by
the Hamiltonian introduced in Sect. 2.

The fulleride is an insulating molecular crystal in which narrow threefold con-
duction bands (with the bandwidth W of the order of 0.5eV) are derived from the
triply-degenerate ¢;, LUMO orbitals of a Cgp molecule. With the doping of three
alkali atoms per one Cgg, we obtain the metallic compound A3Cgg in which the
conduction bands are half-filled. This compound exhibits superconductivity with
the transition temperature T over 30K and the short coherence length & of only
a few times the Cgo-Cgp separation. The conduction electron interacts with various
intramolecular phonons (two nondegenerate a, modes and eight fivefold degenerate
hg multiplets), but the high-energy (wo & 0.2 V) tangential 1, modes couple most
strongly to the electron, as suggested by the first-principles calculations [28-31],
implying that A3Cgo can be modeled as a JT crystal of the Ty, ® hg type.

As discussed in many review articles [32-39], superconductivity in A3Cgo is
generally understood in terms of a simple BCS picture of the s-wave pairing driven
by these high-energy hg intramolecular JT phonons. This understanding is based
on, among others, the observation of the isotope effect on T, by the substitution of
13C for !2C [40-43] and also on the reproduction of the observed T, by using the
McMillan’s formula [44,45]

wo [ 1.04(1 + A) ]

Te= 129 | =771 7 0.620) M

in which the nondimensional electron—phonon coupling constant A is evaluated to
be in the range 0.5 — 1 [28-30] and the Coulomb pseudopotential u* is taken as
about 0.2. In particular, the characteristic dependence of T, on the lattice constant
of the crystal ao is well reproduced in this BCS scenario [46].

A closer look at this system, however, reveals that the present situation is not
so clear and simple. In fact, it is far from being settled for the reasons given in the
following: (1) The McMillan’s formula is derived based on the Migdal-Eliashberg
(ME) theory for superconductivity [47] which is valid only when the parameter
wo/EF (with EF the Fermi energy) is small enough to neglect the vertex correc-
tions [48]. In A3Cgp, however, this parameter is not small, owing to the fact that
EFr (= W/2) is about the same as wg. Thus we need to consider the contribution
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from the vertex corrections [49]. (2) In the case of EF = wp, the concept of p* is
not applicable, either [50], requiring that the electron—electron and electron~phonon
interactions should be treated on an equal footing. Actually, the Coulomb repulsion
between electrons U (or the Coulomb correlation) is strong in the Cgo molecule,
rendering the interplay of this repulsion including the Hund’s-rule coupling J with
the phonon-mediated attraction —Up;, as a matter of intense research even in a
single-site T, ® hg JT system [51-55]. (3) As mentioned before, the isotope effect
for the completely substituted A3'3Cgo can be explained quantitatively well with
resort to the McMillan’s formula, but it is concluded [56] that the formula can never
explain the intriguing experiment done by Chen and Lieber who observed the large
difference in T, between the atomically substituted Rbs('>C,'2Ci_x)s0 and the
molecularly substituted Rb3(*3Cep)x(12Ce0)1-x [57,58].

In order to overcome these difficulties, Han, Gunnarsson, and Crespi have
calculated the on-site pairing susceptibility in the dynamical mean-field theory
(DMFT) [59] and claimed that the JT phonons in both E ® e and Ty, ® hg sys-
tems bring about a local (intramolecular) Cooper pair which does not suffer much
from the effect of large U, in contrast to the non-JT phonons in the Holstein (4 ® @)
model [60]. They have also claimed that with the change of the parameters such as
U, A, and the conduction-electron density n, the obtained 7, behaves much differ-
ently from that predicted in the McMillan formula (or in the ME theory), leading
to a qualitative explanation of the interesting T, versus n dependence as observed
in Na,;CsxCgo and K3—,Ba;Cgo compounds [61]. These interesting results, how-
ever, are still open to debate, partly because the effect of the Hund’s-rule coupling
J is not considered in their work, though it is evident that / works to destroy the
intramolecular (or on-site) Cooper pair, and partly because there is a completely
opposite claim that the ME theory is very robust in the JT systems [62, 63].

In relation to the Hund’s-rule coupling J, there is another controversial claim
that the dynamical feature of the JT phonons is not crucial at all in such a strongly-
correlated system as A3;Cg, especially in the situation near the Mott—Hubbard
transition [64,65] or the antiferromagnetic (AF) state [66]. According to their claim,
the only role that the JT phonons can play is to make J effectively negative, lead-
ing to the multi-band Hubbard model with the on-site strong repulsion U and an
additional inverted Hund’s-rule coupling, based on which superconductivity in the
fullerides is addressed [67, 68].

A further simplification of the system is pursued by arguing that even the
band-multiplicity is not crucial, either, as long as the physical parameters are cho-
sen appropriately. What really matters is only the strong competition between the
phonon-mediated attraction —U pp, and the local Coulomb repulsion U. Actually,
by adopting the Hubbard—Holstein model (or the A ® a system with the on-site
Coulomb repulsion U) and exploiting the fact that the coherence length & is very
short [70], the calculations of T, have been done, with the electron—electron and
electron—phonon interactions treated on an equal footing, to find that the experimen-
tal results, including (a) the relations between T, and a in both fcc and simple cubic
lattices [36, 69], (b) the experiment by Chen and Lieber on the anomalous isotope
effect [57,71], and (c) the relation between T and n [36, 61], are all successfully
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reproduced in a coherent fashion. The point here is the consideration of the off-site
pairing (leading to the extended s-wave nature) composed of not the bare elec-
trons but the (phonon fully-dressed) polarons in order to avoid the strong on-site
repulsion [72].

To summarize, much more works, with taking various aspects into account, are
needed to obtain a full understanding of the mechanism of superconductivity in
A3Cso. Evenin the E ® e and Ty, ® hz model systems, setting aside the fullerides,
the JT effect on superconductivity, especially in the presence of the Coulomb effect
including the Hund’s-rule coupling, is not known well. To some extent we shall
address this issue in the model JT systems in Sect. 4 of this article.

Incidentally, in any kind of the strong-coupling electron—phonon systems, there
is always a subtle argument on the competition between the two scenarios for the
occurrence of superconductivity; one for the formation of a Cooper pair of two
polarons and the other for bipolaron superconductivity [73-78]. In the former, the
pair formation and superconductivity occur simultanecusly, while in the latter, the
bipolaron is formed first and then its Bose-Einstein condensation (BEC) brings
about superconductivity. At the present stage of the theoretical investigations in this
field, there is no precise knowledge about the conditions to make the one scenario
dominate the other, but it is usually presumed that the second scenario will apply, if
the electron—phonon coupling A is large enough. Therefore we shall be mainly con-
cerned with this situation and treat the bipolaron formation and its BEC in Sect. 4.
In the rest of this article, we shall employ units in whichkg = /i = 1.

2 Preliminaries

2.1 Models for JT Crystals

Let us imagine a lattice composed of N JT centers at which electronic and phononic
states are, respectively, Ne- and 1 p,-fold degenerate. In general, we may decompose
the Hamiltonian H for this system as

H =Y Hj+ H; + Hausic + Hy, @)
J

where Hj is the part containing all the possible terms defined at site j, H, describes
the inter-site hoppings of electrons, He,s;c represents the elastic interactions bet-
ween neighboring sites (or the inter-site phonon-phonon interactions), and Hy
takes care of the inter-site Coulomb repulsions. In the fullerides, we need not con-
sider Heasic from the outset and Hy will not be crucial. In the manganites, on the
other hand, H.j.si may be important [14] and Hy may also be important in consid-
ering the nanoscale phase separation, but because we are not primarily concerned
with either the cooperative JT effect mediated by phonons or the phase-separation
scenario, we shall forget both H,,ic and Hy altogether in this article.
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With the assumption that electrons hop only between nearest-neighbor sites, we
may write H; in second quantization as

Z Z thj’ (c.wocl vo + o y! aCJW) (3)

G yy'=1 @

where ¢??" is the overlap integral between the electron orbital y at site j and the
other y’ at site j’ and c;rw (cjyo) creates (annihilates) an electron at site j with orbital
y(= 1,..., N¢) and spin (=1, |). The actual values for 24 ,"I can be determined

in a concrete manner [25], once the crystal structure is specified, but if we are not
concerned with some specific situation, we shall take

Y = t for a nearest-neighbor pair {j,j’) and y = y’, @)
i 0 otherwise,

which is the simplest choice for this hopping matrix.
The site term Hj consists of the chemical-potential term HO, the electron—
electron interaction term Hc‘;?), the phononic term H,f‘,i‘), and the electron—-phonon

coupling term Hc(i_)ph. (The coupling with the #¢ core spins is needed in the
manganites, but it is neglected here.) The first and second terms are written as

Héj) -_—_Illznjyc' (5)
HY =U Z"m"m + 35 U Z Z”jw"w o
y#y’ oo’
+3 J Z Z: yacjy o'Civo'Ciy's + 3 J, Z Z jyo Jy—ac.ll’ —-oCjy’o,
y#y’ oo’ v#y ©
6

where p is the chemical potential and njyq (= ;rya Cjya) denotes the electron number
operator. The on-site Coulomb interaction is prescribed by the parameters U, U’, J,
and J’, which represent, respectively, the magnitudes of the intra-orbital repulsive,
the inter-orbital repulsive, the orbital-exchange (or the Hund’s-rule coupling), and
the pair-exchange interactions. These parameters are related to each other through

U=U'+J+J' =U"+2J. 0
In (7), rotational symmetry in the degenerate-orbital space leads to the first equality,

while we can derive the second one (or / = J’) by comparing the concrete
analytical expressions for J and J' [20].
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With use of the phonon energy wy, the phononic term is given simply as
npp

Hp(ljl) = wo Z a}vaj.,, (8)

v=1

with a;'v (ajv) the local-phonon creation (annihilation) operator at site j with mode

v(= 1,...,npp). Finally, the coupling term Hc(j_)ph is described as

) T t
Hc({ph = ch@”ply Z Z Z Vy(;?cjyacj}"”(aj” + ajv)’ (9)
v oyy o

where gn,@n ,, is the electron—phonon coupling constant characterizing the N, ®

npp JT center and V}f;? is its coupling matrix element. Its concrete form will depend
on the type of the JT system. For example, in the E ® e system in which the elec-
tronic orbitals are d,2_ > and d3 2_,2 for y = 1(= €) and 2(= 0), respectively, the

results for V) = (V) with v = I(= ¢) and 2(= 6) are written as

01 10
v — 2 _ .
(] 0) and V 0-1 (10)

Inthe T ® ¢ system, on the other hand, they are given as

000 001 010
v =1001].V®=|000},andV® =100}, (11)
010 100 000

while in the T ® h system, they are obtained as

000 001 010
3 3 3
pw 2 Y3 001 .V(2)=£(000),V(3)=§ 100],
010 100 000
100 -100
3 1
V(4)=£(0_10 ,andV(5)=5 0 -1 O) (12)
000 0 02

Of course, V(1) = 1 for the A ® a system.
In considering electron motion in a crystal, it is convenient to introduce momen-
tum representation which is the Fourier transform of site representation as

1 —ijk 1 —ijk
Chyo = —= Y e o anday, = — Y e a;,. (13)
kyo \/ﬁ zj: Jyo kv \/ﬁ Zj: jv
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In this representation, H, can be diagonalized. In particular, under the assumption
of (4), we obtain

H + Z Hc(j) = Z (ex — ) cltyackrd' (14)
J

kyo
with ¢ the single-electron dispersion relation, which is given by

d

€K =-ZIZcosk,-, (15)
i=1

for a simple cubic lattice in d dimensions. Though the results will not be given here,
other parts of the Hamiltonian can be rewritten accordingly in this representation.

2.2 Conservation of Pseudospin Angular Momentum

In the E ® e JT system, we can define T} the operator to rotate pseudospin at site j
by

. i
Ty = 1(aj2ajg - a;feaje) 3 Z (C}eachG - cjfoacjea) . (16)
g

As easily checked, this operator commutes with Hj, leading to the local conservation
law of “pseudospin angular momentum” in the electron-phonon coupled system. If
(4) is assumed, the total pseudospin rotation operator T (= Zj T;) is conserved in
the entire crystal.

In order to better exploit this local conservation law, we shall change the rep-
resentation in which the one-body basis functions are the eigen functions of both
the Hamiltonian and 7j. This can be accomplished by the following canonical
transformation from the basis functions (e, 8) to those (@, 8) as

)= 07 6 en) = () )
= — . and =—|. . 17
(djﬁo Y2\ i) \eio0 big) 2\ 1/ \aje an
In this new representation, HY _ph and Tj are, respectively, rewritten as

Hc({?ph ﬁgE@L’ Z [(bja + b}ﬁ) djLad.iBU + (b;a + bjﬁ) dJﬁO'dJ ] (18)

I
bl bia — b} b5+52(djzadjaa dy,dipo ) - (19)
g



Polarons and Bipolarons in Jahn-Teller Crystals 849

Equation (18) for He(i)ph explicitly expresses the characteristic feature of the off-
diagonal electron—phonon coupling, in contrast to the the diagonal electron—phonon

coupling in the A ® a Holstein model [27], in which Hc(‘i_)ph is described as

HY, = gaea Y (af +a5) cfycio- 20)
ag

The existence of the conserved pseudospin rotation is not a common feature
among the JT systems. In fact, we cannot define an operator corresponding to T}
in both 7 ® ¢ and T ® h systems. Mathematical analysis of the continuous group
invariances in each JT system determines the presence/absence of such an opera-
tor [79]; the SO(2) invariance in the E ® e system generates the operator 7j, while
there are no such invariances in the T ® ¢ system. In Sect. 3, we shall find an unex-
pected consequence of this mathematical structure of the JT system in the behavior
of the polaron mass.

2.3 Theoretical Tools

There are various theoretical tools to investigate the polaron and bipolaron prob-
lems. In the weak-coupling region, the standard method is the perturbation-theoretic
approach including the Green’s-function method. In the strong-coupling region,
on the other hand, the canonical transformation due to Lang and Firsov [80] is
commonly used. This is a method very similar to the Lee~Low-Pines unitary trans-
formation [81] developed for the Frohlich model [82] and provides a very useful
trial wavefunction for many types of variational approaches.

These are basically analytic methods, but in recent years numerical methods play
a major role. Among them, the simplest one is exact diagonalization in which the
Hamiltonian matrix obtained with an appropriate expansion basis is numerically
diagonalized. This is very elementary, but due to the bosonic character of phonons,
the size of the Hamiltonian matrix increases exponentially as N and/or N, increase.
Thus it is not easy to treat the E ® e system with more than two sites by this method.

In order to take care of larger systems, more sophisticated methods have been
employed. For example, path-integral quantum Monte Calro (PIQMC) [83] is a
powerful method in which bosonic degrees of freedom are analytically integrated
out to provide an effective self-interaction working on an electron and the remain-
ing integral is performed through quantum Monte Carlo (QMC) simulations. Since
the polaron problem does not suffer from the notorious negative-sign problem,
we can hope to obtain accurate results for a lattice of very large N and arbitrary
dimensions by using QMC. Other advanced methods include; (1) density-matrix
renormalization group (DMRG) [84], (2) the large-scale variational method called
“variational exact diagonalization (VED)” [85,86], (3) dynamical Mean-field theory
(DMFT) [87], and (4) diagrammatic Monte Carlo (DMC) [88]. It is very fortunate
that useful textbooks on these methods have recently been published [89, 90]. We
suggest interested readers to consult them for details.
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3 Polaron: Single-Electron Problem

In the polaron problem (or the single-electron system coupled with phonons), both
spin degrees of freedom and the electron—electron interaction as described by HY
are irrelevant. The first work on the JT polaron was done by Hock et al. [91] on the
E ® b system [92] which, unfortunately, possesses a too simple internal structure
to provide qualitatively different features from those of the A ® a system. Several
works have treated the second simplest £ ® e system and found a quantitative dif-
ference in the polaron effective mass from that in the A ® a system [63,93-98]. The
T ® t JT polaron has also been studied and the difference from that in the £ ® e
system is revealed [99-101].

Let us start with the E ®e JT polaron in the weak-coupling region (or for the case
of small gg @), in which the perturbation approach in momentum representation is
useful. The thermal one-electron Green’s function Gy (i w,) With @, the fermion
Matsubara frequency is defined at temperature T by

yr
Guyo lin) = — /0 A ¢ Tediyo (D) ). @)

This function is related to the self-energy Xxyo (i wn) through the Dyson equation as
Gryo (i wn)”! = iw, —ex + . — Tyyo (iwn). In Fig. 1, diagrammatic representation
for Tyyo (iwn) are given, together with the formal expansion series for the vertex
function Tyrgr,yo (K'iwa, Kiw,). Using the self-energy analytically continued on
the real frequency axis, we can determine the polaron (renormalized) dispersion
relation Ex by the solution of Ex = €x + Zkyo(Ex) — . The bare band mass m
and the polaron effective mass m* are derived from the curvatures of ex and Ey at
k = 0, respectively. Of course, the polaron stabilization energy Ejr(~ —g}z @e/ ©0)
is obtained as the shift of u(= —Ejr).

a
Self-energy

Fig. 1 (a) Self-energy in diagrammatic representation. (b) Expansion series for the vertex I' up
to g*. Thick solid, thick dashed, and thin dashed lines indicate, respectively, the electron Green’s
function, the dressed phonon, ard the bare phonon propagators
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In the weak-coupling region, we may replace Giyo (i ws) by the bare one (iwn —
ex + 1)~! in Fig. 1 and take Tyrg o (K'i wp, Kiwy) as unity or the first term T in
Fig. 1b. Then we obtain the result for the mass ratio m*/m, the most fundamental
quantity in the polaron physics, as

* 2
"L=1+2(@) . 22)
m wo

Similar calculations can be done for A ® a, T ® t,and T ® h to find

* 2 * 2 * 2
5
'"_=1+(gﬂ) ,'"_=.+z(g7®') ,andi=1+-(gm") . (23)
m wo m wo m 3\ we

from which we see that it is exactly the same mass enhancement factor in all the
cases, if we normalize the coupling constants in the following way:

1 1 3
8A®a = £, 8E@e = Eg, 8Ter = Eg, and gron = \/;g- (24)
In fact, there is no qualitative difference between the JT polaron and the Holstein
polaron in this region. Even quantitatively, they are exactly the same, as long as the
coupling constants are normalized according to (24).

In the strong-coupling limit, a polaron will be completely localized at a single
site, indicating m*/m = oo, and the problem is reduced to a single-site system
in which the polaron stabilization energy is a main issue [102]. For a finite but very
large coupling, the localized polaron will begin to hop between sites, but the hopping
in this case is a very rare event. Thus physics connected with such a hopping can be
well captured by just considering a two-site system. The same is true for the anti-
adiabatic case in which ¢ is very small, implying that the hopping is a very rare event
from the outset.

Now, we need to know a formula to evaluate m* / m from the eigen-state energies
in a finite-site system. For this purpose, let us consider a one-dimensional (d = 1)
infinite chain first. By making an expansion of the bare dispersion € in (15) around
k =0, weseethat? = 1/2m = [max{e; } —min{e; }]/4, where max/min{e } is the
maximum/minimum value of ¢; in the entire Brillouin zone. With the introduction
of the electron—phonon interaction, ¢ will be modified effectively into ¢*. Then we
can follow a similar argument to reach the relation of t* = 1/2m* = [max{E;} —
min{ Ey }]/4. By taking the ratio of these results, we obtain an interesting result as
m*/m = [max{ex} — min{e, }]/[max{Ex} — min{ Er}]. In this derivation, we have
assumed one dimensionality, but exactly the same result can be obtained even if we
consider in both 2D and 3D, indicating that m*/m can be evaluated only through
the polaron bandwidth, max{ E; } — min{ E }, irrespective of dimensionality.

The total polaron bandwidth can be estimated by calculating E in finite-site
systems where some discrete values of k’s are available. In the two-site problem, if
we write the ground-state wavefunction for a polaron localized at site j as W, the
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ground- and the first-excited-state wavefunctions in a two-site (j = 1 or 2) system
are well represented by Wy = (¥; + ¥;)/+/2 and ¥_ = (¥, — U,)/ /2, respec-
tively, in the region under consideration. The former corresponds to the bonding
state (k = 0) with energy E and the latter to the anti-bonding one (k = n) with
energy E_. Then, since €; — €p = 2¢ in the two-site calculation, we obtain m*/m
through the relation

2t

m*
m E-—E4

(25)
Note that the result m*/m obtained through (25) does not depend on the value ¢ in
the strong-coupling and/or anti-adiabatic region.

With use of (25), a rigorous analytical result has already been obtained for the
E ® e JT polaron as [93]

m* 2 w 1 2

o = lo(ebod/ o) + hehoo/ud) ~ o= 22 exp [5 (£) ] @
where /; (x) is the modified Bessel function of i th order and (24) is used in arriving
at the last equation. Compared to m*/m = exp[(g/wo)?] the Holstein’s famous
factor for the A ® a system, we come to realize that m*/m becomes much less
enhanced in the £ ® e polaron than that in the Holstein model.

By comparing the result of m*/m for the infinite-site system obtained by
VED [96] (see, Fig.2), we are confident that the two-site calculation provides a
reasonably good result for m*/m in the whole range of g at least in the anti-
adiabatic region of 7 /wg. The relevance of the two-site calculation has also been
seen in the Holstein model [78]. Thus we can expect that the same is true for the
T ® ¢ JT polaron. In Fig. 3, we show the result of m/m* for the T ® ¢ system
(solid curve) which is obtained in the anti-adiabatic region by implementing an

Fig. 2 Inverse of the polaron 0.8
mass enhancement factor,

m/m*, as a function of *
g%/wt for the A ® a (HP: 3 ]
Holstein polaron) and the = N
E ® e JT polaron. In the 0.4 1= \
latter, the result in the infinite N
chain (d = 1) is compared 0.2~
with that in the two-site
system as well as the analytic
result in (26). The 0
anti-adiabatic condition of >
wo/t = 5 is assumed &

—— : JTP (chain)
~-=-= 1 JTP (2-site)
............. g

-« =~ : HP (chain)
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R
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Fig. 3 Inverse of the mass

enhancement factor, m/m*, ' o, / t=35

as a function of g2/wd with

d = 1forthe T ® 1 (solid 0.8 —:JTP (T®)
curve) and the E @ e \ .
(dotted-dashed curve) IT 0.6 - W\ TP (E@e)

---:HP

polarons in comparison with
the Holstein one (dashed
curve). All the results are
obtained by exact
diagonalization applied to the 02
two-site Hamiltonian in the
anti-adiabatic region

m/ m*

04 -

exact diagonalization study of the two-site Hamiltonian [100, 101]. This result is
situated between the corresponding ones for the E ® e JT (dotted-dashed curve)
and the A ® a Holstein (dashed curve) polarons.

Physically the polaron mass enhancement is brought about by the virtual excita-
tion of phonons. In the A ® a Holstein model no restriction is imposed on exciting
multiple phonons, implying that all the terms in Fig. 1b for the vertex function con-
tribute, while in the £ ® e JT model, there is a severe restriction due to the existence
of the conservation law intimately related to the SO(2) rotational symmetry in the
pseudospin space. Actually, among the first- and second-order terms for the ver-
tex function, only the term I'; s contributes, leading to the smaller polaron mass
enhancement factor m™* /m than that in the Holstein model in which the correction
Iy is known to enhances m* /m very much. In this way, the applicable range of the
Migdal’s approximation [48] becomes much wider in the E ® e JT system [63].

In order to understand the reason why the result for m*/m in the T @t JT system
comes between those in the A ® a and E ® e systems, we shall rewrite Hc(’_)ph in (9)
forthe T @ ¢ system as [101]

2
Hco_)ph = \/;87@ [(b;f + bp)(djt, diso + by dine — 2di5, djio)
+ by + bj—;)(dj‘;adjla + dj;_‘,dj;;g - 2‘1;[0"120)
+ (b + b)) (2d}}, dise — dif ydyio — dj’{adjzo)], (27)

by introducing an appropriate unitary transformation. The first two terms in (27) has
a structure very similar to that in (18) representing the feature of the off-diagonal
electron—phonon coupling, which makes many terms in the vertex correction vanish.
On the other hand, the last term in (27) has the feature of the diagonal electron—
phonon coupling as in the A ® a system. In this respect, the system 7 ® ¢ may be
regarded as T ® (a @ e), an intermediate character.
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Fig. 4 Inverse of the mass i 1
enhancement factor, m/m™, = .
for the E @ e JT polaron as a o—e:JTP Gd)
function of g2/3w{ in the 0.8 O- -0: HP (3d)
simple cubic lattice, in *
comparison with the £ 06
corresponding result in the §
Holstein polaron [94] 04+

02
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The reduction of t — a @ e can also be ascertained by considering the adiabatic
potential energy surface for the 7 ® ¢ system. The potential contains four equivalent
wells for sufficiently large grg, [103-105], but the wells are not isotropic and the
vibrational z-mode splits into an a-mode of energy wp and two e-modes of energy
\/m wyp.

InFig.4, m/ m* for the E®e JT polaron in the intermediate-adiabaticity region is
given in comparison with the corresponding one for the Holstein polaron in the sim-
ple cubic lattice (d = 3). The results are obtained by PIQMC [94] and the physical
message is just the same as the one we have already explained.

In concluding this section, we emphasize an amazing fact that the internal
mathematical structure of the JT center determines the magnitude of the polaron
effective mass. This implies that there will be an intrinsic difference in m* between
the manganese oxides La;—xSryMnO3 with eg electrons and the titanium ones
La;_xSrxTiO3 with #54 electrons, as may be observed by the difference in the trans-
port mass or the T -linear coefficient in the low-temperature electronic specific heat
C.(T) [101]. The experimental result on C,(T") obtained by Tokura’s group [106]
may be relevant to this issue.

4 Bipolarons: Problems with Two or More Electrons

4.1 Bipolaron Formation

If there are two or more electrons in the system, we should take the Coulomb corre-

lation into account by considering HY given in (6). In the case of the E ® e system,
using (7) and (17), we can rewrite (6) into
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HY =(U"+J) Z”M”Jyl + (U +J) Z"wa’hﬁ—a

+(U'-J) Z"jav”jﬂa +2J Zdjaa Jﬂ—adja—adjﬁa
ag g

N|Q|

(g —1)—2J ana,,nma +2JZ o ia—odips, (28)

where U = U’ + J andnj = ¥, Njyo-
In addition to the Coulomb interaction, the phonon-mediated interactions Up,
work on the electrons. In the weak-coupling and anti-adiabatic region, the lowest-

order perturbation calculation provides Uy, = Zj U ?,) with U[f;? obtained as

2
D _ .8
UD = p2E8e f:e annm,, _p8kee Z hodl_gdia-odips,  (29)

in the £ ® e system. By comparing (29) with (28), we notice that the phonon-
exchange effect makes J decrease, while U unchanged at least up to this order
of perturbation. This result is somewhat different from the one in the single-band
system. In fact, in the case of the A ® a system with the Hubbard-U interaction
Hy(=U Zj njynyy ), the corresponding Uy, is obtained as

Upp =~ (30)

indicating that the Coulomb repulsion U itself is reduced by the phonon-induced
attraction. Of course, the electron—phonon interaction shifts both the hopping inte-
gral t and the chemical potential u as well.

The formation of a bipolaron (or a bound pair of two polarons) is established, if
the ground-state energy of the two-electron system is lower than twice the ground-
state energy of a polaron. This issue has been studied rather intensively for the
Holstein bipolaron [78], but it is not the case for the JT bipolaron. In [96], the
electron—electron correlation function and the effective mass of an E ® e bipo-
laron was studied in one dimension in comparison with the corresponding results
for the Holstein bipolaron [107]. In Fig. 5, we plot the phase diagram for the bipo-
laron formation, from which we find that the JT bipolaron is less stable than the
Holstein one.

4.2 Two-Site Four-Electron E ® e System

Due to huge dimensions of the Hilbert space for JT systems, it is quite difficult
to treat many JT polarons even with state-of-the-art supercomputers. Therefore we
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have to be satisfied with studying small clusters, if we resort to exact diagonalization
or its marginal refinements.

Here we present our results of the two-site £ ® e JT model at half-filling (two
electrons per site on average) at which the competition between the Coulomb repul-
sion and the JT-phonon induced attraction becomes very eminent, because both the
Hund’s-rule coupling and the pair-exchange interaction work only if two electrons
exist at the same site. This two-site calculation is of particular relevance to the
physics of a crystal in the anti-adiabatic and/or strong-coupling region, but we may
claim that studying this system is generally the first and important step towards a
full understanding of the physics connected with the electron hopping effect in JT
crystals due to the fact that a two-site system is a minimal model containing electron
hopping terms in the presence of various kinds of competing interactions.

As a work preceding to ours, Han and Gunnarsson [108] treated three kinds of
one- and two-site JT models (E ® a, E @ e, and T ® h) in considering the metal-
insulator transition (MIT) in A,Cgo with n = 3 or 4. They were mainly concerned
with the parameters in the region of

gLwg KW UandJ ~ g?lwg < W, (31)

in which the effects of the Hund’s-rule and the JT couplings manifest themselves
as merely first- and second-order perturbation, respectively. Here W denotes the
bare bandwidth. Then, as mentioned before, the effect of the JT coupling simply
cancels that of the exchange integral J, excluding more subtle physics driven by
the competition of the JT and Hund’s-rule couplings. We shall discuss this subtle
physics by relaxing the parameter space from the conditions specified in (31).
Before discussing the calculated results, let us consider the two limiting cases
first. One is the limit of g(= +/2gEge) — 00, in which four electrons form two
bipolarons with each localized at a different site due to the fact that the E ® e cou-
pling favors the spin-singlet electron pair per site. The structure of the electronic
wave function corresponding to this situation is shown schematically in Fig. 6. Due



Polarons and Bipolarons in Jahn-Teller Crystals 857

5

Fad A
@‘J@W‘ @‘m@v\ @
AN v Vs Pl

Fig. 6 Structure of the electronic wave function for the two-site £ ® e system at half-filling. This
structure schematically represents “the intra-site singlet state”. Double-sided arrows indicate the
connection of the matrix elements of the wave function via the £ ® e coupling

Fig. 7 Similar schematic view of the Structure of the electronic wave function for the two-site
E @ e system at half-filling. This structure represents the state dominated by “the inter-site singlet
state”. In this case, double-sided arrows indicate the connection of the matrix elements of the wave
function via both the £ ® e coupling and the usual inter-site hopping

to large g, the effective hopping amplitude ¢* is virtually zero, making the system
insulating. In particular, in the limit of g — oo, the ground state is characterized by
an orbital ordering. In the intermediate-coupling region, however, it can be an insu-
lator without the orbital ordering or a nonmagnetic JT Mott insulator, as suggested
by Fabrizio and Tosatti [109]. The detail of the orbital ordering depends on the
choice of £ Y'. In the diagonal hopping 4 ¥ = 18,,+), an antiferro-orbital (AFO)
ordering is more favorable than a ferro-orbital one.

Another limit is to take J — oo with keeping U’/J fixed.! Due to large U’ and
J, each site is occupied by two electrons with parallel spins, but the total spin of the
ground state S is not two but zero owing to the superexchange interaction, suggest-
ing an antiferromagnetic or a spin density wave (SDW) state the structure of which
is schematically shown in Fig. 7.

!In view of the fact that U’ and J are, more or less, of the same order of magnitude in actual
materials, we consider this condition to be reasonable.
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Fig. 8 Schematic phase diagram for the two-site £ ® e system at half-filling in the (g. J) space.
AFO and SDW indicate, respectively, antiferro-orbital ordering and spin density wave states. The
electronic state is specified by either the bare electron (Bare), the single-polaron (SP), or the
bipolaron (BP). Parameters g, wy/t, and J/U’ are, respectively, chosen as 1, 1, 0.5 along the
line I

In Fig. 8, a schematic phase diagram is shown to connect the above two limits by
changing the parameters g and J. We shall focus our attention on the intermediate-
coupling region along the line I in this figure, where a strong competition between
g and J is expected. This competition is investigated by the calculation of various
physical quantities with use of exact diagonalization. Along the line I, the parame-
ters g, wo/t, and J /U’ are set equal to be 1, 1, 0.5, respectively. These values are
chosen in reference to the manganites.

The calculated quantities include charge density wave (CDW), spin density
wave, antiferro-orbital ordering, and electron-pairing response functions. The cor-
responding operators are the density operator A, the spin density operator A%, the
antiferro-orbital operator A°, and the singlet pairing operator ®, all of which are
defined in terms of the original orbitals of €(= d;2_)2) and (= d5.2_,2) as

1
=3 2 (Crwc'w - c;rroczw) ’ (32)
yo
s 1 t + ¥ n
A = 5 Z [(Clch'lyT - c|y¢c'7¢) - (Czﬁcz” - 62)402”)] , 33)
14
1
A%= 2 Z [(CLVC'“’ - CTaana) - (Clmczea - c;'eaczoc,)] , (34)
o
= Z Ar(y, y’)cky’.LCkyTy (35)
ky.y’

where the operator ¢4 is defined as
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1 ik
Ckyo = z (Clya +e C2y0) s (36)

where k is either 0 or x,2 and Ay is a complex parameter to be determined
variationally under the normalization and the antisymmetric conditions

D 1Ak Y = 1and Ar(r.Y)) = DY y). (37)
k.y.y’

With using the operator A, we can define the charge response function as
o0 . +
¥(w) = —i[ dee 0" ([A%(r), A°(0)]) . (38)
0

Similarly, we can define other response functions y* and x° in terms of 4® and A°,
respectively. We can also define the pairing response function by

P) =-i /ow dre " ([o(r), &1 (0)]). (39)

In calculating xP(w) at @ — 0 (static limit), we optimize the parameters Ax (y, y’)
50 as to maximize the absolute value of yP(0), through which we can automatically
determine a favorable types of electron pairing for given set of parameters U’, J,
and g. More specifically, we can find the better pairing between the two possibilities;
one is the pairing with their total electronic pseudospin 7 = 0 (SCP0) and the other
is the pairing with T = 1 (SCP1). We denote the former by xP° and the latter
by xP!.

The response functions in the noninteracting two-site four-electron system are

easily calculated to give y°(0) = x*(0) = x°(0) = 2xP(0) = —1/1. We
shall normalize the static response functions by the corresponding values in the
noninteracting system; y = —tx(0) for A°, A%, and A°, while § = —21x(0)
for ®.

Now we shall show our calculated results along the line I in Fig. 8. For the sake
of convenience, let us divide the values of J into three regions; weak-coupling
(0 £ J/t £ 0.5), intermediate-coupling (0.5 < J/t < 1), and strong-coupling
(J/t Z 1). The ground-state and the first-excited-state energies are shown in Fig. 9.
In the entire region of the phase diagram, the ground state is always characterized
by § =T =0. In the weak-coupling region where the effect of g dominates that of
J, the electrons form an intra-site singlet state and the first-excited state is speci-
fied by S =0 and T = 1, suggesting the dominance of orbital fluctuations. In the
intermediate-coupling region, on the other hand, the electrons begin to form spin-
triplet states at both sites due to the Hund’s-rule coupling, but S remains to be zero

2 Note that we define k modulo 27, indicating that —k = k.
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Fig. 9 Ground-state and first-excited-state energies in units of wp of the two-site four-electron
E ®e system fort = wy, g = wp, and J /U’ = 0.5. S and T denote the total spin and pseudospin
of the system, respectively. Solid curve ((0,0) (L)) indicates the lowest energy in the (S,T) =
(0, 0) sector; dotted curve ((1, 0) (L)) the lowest energy in the sector with (S, T) = (1, 0); dashed
curve ((0, 1) (L)) the lowest energy in the sector with (S, T') = (0, 1); dashed-dotted curve ((0,0)
(1st)) the first-excited-state energy in the sector with (S, T) = (0,0)

Normalized response

Jt

Fig. 10 The normalized response functions for 1 = wy, g = wy, and J/U’ = 0.5. SCPO is the
response of the singlet Cooper pairing with pseudospin zero (¥*°), SCP! that of the singlet Cooper
pairing with pseudospin one (?'), AFO the antiferro-orbital ordering (¥°), SDW (¥*), and CDW
(X°). Note that the results for SCP0, SCP1, and CDW are given in ten times magnification

brought about by the electron hopping term or the superexchange antiferromagnetic
interaction. From this viewpoint, this phase should be regard as a inter-site sin-
glet state rather than a local-triplet state. Finally in the strong-coupling region, the
first-excited state changes into the one with S = 1, implying the dominance of spin
fluctuations.

The results for the response functions are plotted in Fig. 10 in which a sharp
crossover and the concomitant enhancement of SCP0 and SCP1 are seen. (The total
number of excited phonons in the system was cut off at sixteen, which is enough for
convergence.)

In the weak-coupling region, the AFO response is largest, as expected from
the result of T = 1 for the first-excited state (see Fig.9) and the electrons form
local singlet states with either the total-pseudospin-zero state (PO) described by
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(dJTMd;f/3 ' d}a Jd);“)/ V2 or the total-pseudospin-one state (P1) described by

either d;.'a d;.ra L or d;.rﬂ Td;B 4 The weight of the PO state is larger than that of the P1
state, leading to the larger response in SCPO than that in SCP1. As J is gradually
turning on, both AFO and SCP response functions begin to decrease, reflecting the
gradual breaking of the local singlet pairing.

In the intermediate-coupling region, SCPO and SCP1 cease to decrease and then
increase; each has a peak in the vicinity of the crossover from AFO to SDW states.
This enhancement corresponds to the growth of the inter-site pairing, as seen by
inspecting the forms for PO and Pl. In this region, PO is represented by either

ot at ot t oot gt o . :
(dla'rdzm dla,LdZﬁT)/ﬁ or (dIHTd2ai dlﬁJ,dZaT)/ﬁ’ while P1 by either
(d]pd)y, — dl, dl )/ V2 or (d]gadls, — dlg d}s0)/ /2. Then the diagonal
hopping makes SCP1 dominate over SCPO.

In the strong-coupling region, the SDW response dominates, as expected from
the result of S = 1 for the first-excited state (see Fig.9). The decrease of the SCP0O
and SCP1 responses can be understand in terms of the Lehmann representation of
xP as

(2, n|®IG)|* + |(6,n|®T|G)

2
im X*(@) = - [
wl—n>10 X (w) ; E(2,n) + 2# - EG

(40)

where |G) is the ground state, | N, n} denotes the nth excited state of the N -electron
system, E(N,n) is its energy. (In deriving (40), we have exploited particle-hole
symmetry.) In the two-electron system, each electron becomes localized at a dif-
ferent site as J increases, leading to the saturation of the ground-state energy
E(2,0), but the situation is different in the four-electron system; Eg does not
saturate but increases almost linearly with U’ — J. Thus the energy denominator
E(2,n) + 2u — Eg becomes large as J and U’ increase with keeping J/ U’ fixed,
resulting in the decrease of the SCPO and SCP1 responses. Physically, the period
of antiferromagnetic order is comparable to the coherence length of the spin-singlet
Cooper pair and these two orders do not coexist in this situation.

We have also explored the situation in which g is increased with other parameters
kept fixed. The qualitative behaviors of the response functions are almost the same
as those along the line I, except for the sharpness of the crossover, as illustrated in
Fig. 11 for the number of excited phonons associated with each electron.

4.3 Two-Band Hubbard Model with Hund’s-rule coupling

Inspired by fullerene superconductors, Capone et al. [68] studied a two-band (or
two-orbital) Hubbard model, defined by the Hamiltonian H described as
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Number of phonons per electron

4 2/a)o2

Fig. 11 The number of phonons per electron of the two-site E ® e system for 7 = wp, U’ = 3wy,
and J = 1.5wp. The solid curve (four) represents the result for the four-electron system, the
dashed curve (two) for the singlet two-electron system, and the dashed-dotted curve (one) for the
single-clectron system. (We have achieved convergence by cutting off the total number of excited
phonons at thirty-two in this four-electron system)

H=-1) 3" (dj:/adj'yff + djtyadjw)
G.) ve

g )
+ o Yomslay = 1) +27 Y dfydiy diaordipa, @1)
J

joo’

with U > 0and J < 0. Note that (1) the sign of J is negative, and (2) this
Hamiltonian can be regarded as an effective Hamiltonian for the £ ® e molecular-
crystal model in the anti-adiabatic and weak-coupling regime of g, but the effect
of g dominates over the Hund’s-rule coupling. The ground state of this model was
analyzed around half-filling by means of DMFT. Since the electrons locally form a
singlet state due to the inverted Hund’s-rule coupling, this system goes to a local-
singlet Mott insulator in the limit of U — oo at half-filling. Attention was paid to
the physics near this Mott transition.

Using DMFT, Capone et al. calculated the s-wave superconducting gap A as
a function of U and obtained an intriguing ground-state phase diagram in the
(U/W,8) space, shown in Fig.12, where § is the doping concentration. It is
remarkable that in the very weak-coupling region of J (|f | /W = 0.05 with W
the bare bandwidth), U enhances the Cooper pairing close to the Mott transition
(U/W ~ 0.8), as called the strongly correlated superconductivity (SCS). Another
DMFT analysis by Han [110], based on the E @ e molecular crystal model without
the usual Hund’s-rule coupling, supported the emergence of this SCS.
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Fig. 12 (a) Ground-state phase diagram for the model with inverted Hund’s-rule coupling with
8 the doping concentration. (b) Superconducting gap at half filling as a function of U/ W {112].
ML, PG, and SCS indicate Mott insulating, pseudogap, and strongly-correlated superconducting
phases, respectively

The scenario leading to SCS is explained as follows: In the Hamiltonian (41),
there are two interactions, U and J. J is an attraction responsible for the Cooper
pairing, while U is a repulsive interaction to renormalize W into the narrower
effective bandwidth W*, which is given by W* = W with z the renormalization
factor. Since J is not anticipated to be renormalized by U [67], the ratio |f |/w*
becomes larger as U increases. As is suggested by studies on the attractive Hubbard
model [111], A may become large, if the effective bandwidth and the attraction
become comparable, leading to the peak structure in A as a function of U for
| 7|/ W* ~ 1.

In real systems, the effectively negative J inevitably indicates the rather strong
gE®e in competition with the bare Coulombic orbital-exchange interaction J. Then,
as shown in Fig. 11, there would appear the effects of g g g, that are not included in
the simple reduction leading to J. Study of the E ® e JT system with fully including
the dynamic phonon effects and faithfully treating the Hund’s-rule coupling is an
important challenge.

4.4 Bipolaron Superconductivity

Although the intermediate-coupling region is realistic and most interesting, it is also
most difficult to treat accurately. Before considering this difficult problem, it would
be helpful to investigate extreme situations of weak- and strong-coupling regions.
In the former region, an electron—phonon interaction brings about an attrac-
tion between electrons, leading to superconductivity in the BCS scenario. In this
sense, it is a well-explored region. In the strong-coupling region, on the other
hand, it is not the case, although the concept of bipolaron superconductivity is
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believed to be basically correct. In fact, the scenario of Bose-Einstein condensation
(BEC) of many bipolarons is not matured enough, because many issues including
the mass enhancement/renormalization and the repulsion between bipolarons are
not satisfactorily solved yet. In this subsection, we shall touch on this bipolaron
superconductivity.

Let us start with the A ® a Holstein model. In the strong-coupling region, it is
usually the case to employ the Lang-Firsov transformation [80], defined as

. . + N .
Gio = e S¢ipe’S = A7)y and 5 = e 7S age'S = aj — An;, (42)

where A = g4@a/wo and
=il an( —aj) (43)

Then the original Holstein Hamiltonian Hy is rewritten with these new variables by

H=-—t Z ( erg+c, qa)+woZa a;

(i)e
- 2).2(1)0 Zﬁnﬁu - ([,L + lza)o Zﬁj. (44)
i) J

Treating the first two terms in the right hand side of (44) within second-order
perturbation, we obtain

Ha=-7) (BBy +BJB)+2V Y poy =203 p (45
) ) i

where the the quasi-boson operator ij and its density operator p; are defined as

-~ ~ ~ 1 o~
BJ.T = chTCN’ and pj = fijg = Enj, (46)

respectively. The various parameters in (44) have been defined by

_])n+m Az(n+m)

;o2 e

wo ; nm!  n+m+ 222 (47)
. 272 2 1 )2(n+m)
=2 -2

wo g ntm'n +m + 212’ (48)
. 1 -
M =I~L+212w0+-2-zV, (49)

where z is the coordination number.
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Ferro Ferro
XY XY
! 2
Antiferro Antiferro
O l J:/J.Y 0 1 J :/J x

Fig. 13 Schematic ground-state phase diagram for the spin-1/2 XX Z model in the magnetic field
in one [115] and two dimensions [119). The line of # = 0 corresponds to the half-filling in the
Holstein model. Antiferromagnetic, ferromagnetic, and XY phases correspond, respectively, to
charge density wave, band insulating, and superconducting states in the Holstein model

Now, by exploiting the similarity of the commutation relations of [B;, Bjt] =
(1 —2p;)8y and [S}7, S, +] = —25; 8y, we can introduce the exact mapping of the
operators ij and pj to the spin 1/2 operators through

Bl > s;*, and pj —> S§ +1/2. (50)

With this exact mapping, we can transform Hy to the Hamiltonian Hyyxz repre-
senting the spin-1/2 quantum X X Z model [113, 114], written by

Hxxz =2) (J*SFS§+ 7S] S+ ISiS5) —h ) S (5D
63 p

where the parameters J*, J7, JZ, and h are, respectively, defined by?
J¥=JY={,J"=V, andh = 2u + 4)%wy. (52)

The spin-1/2 XXZ model has been extensively investigated, especially for
the case of one dimension by both the Bethe—ansatz approach [115] and field-
theoretic methods [116]. In Fig. 13, the ground-state phase diagram is shown in the
(h/2J%,J%/J*) space. In the regions specified by “Ferro” and “Antiferro”, the
ground state is characterized by a finite energy gap excitation, indicating that the cor-
responding state in the mapped Holstein system is an insulator. More specifically,
the former corresponds to a band insulating state, while the latter to a CDW phase.
In the region indicated by “XY”, the gapless ground state appears, implying the

3 The sign of J* can be changed by a canonical transformation without changing those of /1 and
J#, and is not essential. The ratios of J</J* and /1/J* are relevant.
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appearance of a conducting state. According to Leggett [117], the conducting phase
in a pure Bose system is assumed to be always superfluid at zero temperature.

In two dimensions, the ground-state phase diagram has been obtained by quan-
tum Monte Carlo simulation [118, 119]. There is a little difference in the vicinity of
the Heisenberg point (J* = J¢) from that in one dimension, but they are qualita-
tively quite similar.

The XXZ model is equivalent to a hard-core Bose—~Hubbard model with only
nearest-neighbor hopping and interaction. Recently the Bose—Hubbard model has
been investigated, but exact phase diagrams have not been obtained so far in three
or larger dimensions. It is hoped that DMFT will clarify the phase diagram in infinite
dimensions.

Finally we consider the JT bipolarons. In the original £ ® e model, two vibra-
tional modes are doubly-degenerate. Instead, we treat the £ ® (b; + b2) model, the
Hamiltonian of which reads

H==Y"Y 1ty (nyaCj'y'a+C}y'aCJyo) S ONIEDIDD “""}1"1’
G ory’ i ii=12
+g1) (na—nsp) (“n +a}) ) +82) (c}aociﬂa +C}ﬂoci“") ("12 +"J'Tz) :
i fo
(53)

When g = g2 and w; = w», this model is reduced to the £ ® e JT system. For
simplicity, we assume that g, /w; > g»/w> and treat the g, term within second-
order perturbation. By adopting a similar method in treating the Holstein model, we
can map the £ ® (b; + b2) model into the effective spin model as

- P ¢PgP PeP P z

H= ZZZZJW’SWSW’ +22‘]J-Siasjﬁ _hzsjy’ (54)
G vy p ip v

where /i = 2u and other parameters are given as

213 (_l)n+m A%('H'm)

Joy = ‘,1""7’ = w_lv’e—zlf ;n: nm! n+4+m+ 2% (53)
Jyy = 2:0_31}”8_2)‘% ;n: n!in! n -,:?::-m;ﬁ ’ (56)
== e e T en
Ji =420 + %e-”f > %n — 2;2;15;2/““ . (58)

n

Note (1) there are two kinds of spins Sy and Sg per site and (2) J§ is much larger
than the other interaction parameters.
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Fig. 14 Schematic representation of the effective spin model for the £ ® (b; + b;) molecular
crystal system in one dimension. Jy”y, (y.¥' = a.B; p = x, y.2) denotes the interaction between

nearest-neighbor spins y and y’. J _f_ is the on-site interaction between e and B at the same site

RS phase CD phase

> :Singlet pair

Fig. 15 Schematic pictures for three phases that may exist in the relevant parameter region at
half-filling. RS denotes rung singlet, CD columnar dimerization, and SD staggered dimerization,
respectively. There may be other possible phases

In one dimension, this spin mode! is represented by a two-leg ladder system
[120] as shown in Fig. 14 and examples of possible phases are schematically given
in Fig. 15. In two dimensions, we may think of the effective spin model as shown in
Fig. 16. As we see, those spin models are the subject of intense researches in relation
to HTSC and at present we cannot give a further reliable information.

5 Conclusions and Future Prospects

We have reviewed the recent developments in the field of the Jahn-Teller effect
on itinerant electrons in Jahn—Teller crystals. In Sect. 1, we have summarized the
current status of the researches on the fullerene superconductors and the manganite
perovskites exhibiting the colossal magnetoresistance and concluded that, although
various impressive findings have been made in relation to those oxides, there still
remain many challenging problems, reflecting the intrinsic complexities of those
materials. In Sect. 2—4, we have focused on the model JT systems, in particular, the
canonical E ® e model, and discussed some of the interesting features of polarons
and bipolarons in the JT crystals, including our own original contributions.

In concluding this review, we have to admit that the researches on the JT effect
on itinerant electrons are still in a very early stage, considering the richness of the
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-
—~
=

Fig. 16 Schematic representation of the effective spin model for the £ ® (b + b>) molecular
crystal system in two dimensions. The two-leg ladders, each of which represents a one-dimensional
E @ (b) + by) crystal, are piled in the direction of z axis

problem concerning the interplay among spin, charge, orbital, and phonon degrees
of freedom. We would presume that this field of research will pose very good chal-
lenging projects for the next-generation supercomputers and hope that such heavy
numerical works will open a new rich field of physics and chemistry.

Acknowledgements This work was partially supported by Global COE Program “the Physical
Sciences Frontier”, the Ministry of Education, Culture, Sports, Science, and Technology (MEXT),
Japan as well as by a Grant-in-Aid for Scientific Research in Priority Areas “Development of New
Quantum Simulators and Quantum Design™ (No.17064004) of MEXT, Japan. We would like to
thank M. Kaplan, H. Koizumi, T. Hotta, and H. Maebashi for useful discussions for years.

References

1. H.A. Jahn, E. Teller, Proc. R. Soc. Lond. A161, 220 (1937)
. R. Engleman, The Jahn-Teller Effect in Molecules and Crystals (Wiley, New York, 1972)
. L.B. Bersuker, The Jahn-Teller Effect (Cambridge University Press, Cambridge, 2006)

. M.D. Kaplan, B.G. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals (Plenum,
New York, 1995)

. J.G. Bednorz, K.A. Miiller, Z. Phys. B 64, 189 (1986)
. A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra,
A.P. Ramirez, A.R. Kortan, Nature 350, 600 (1991)
7. S. Jin, TH. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, J.H. Chen, Science 264,
413 (1994)
8. Y. Tokura, Y. Tomioka, H. Kuwabara, A. Asamitsu, Y. Moritomo, M. Kasai, J. Appl. Phys. 79
5288 (1996)
9. C. Zener, Phys. Rev. 82 403 (1951)
10. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)
11. P.-G. de Gennes, Phys. Rev. 118 141 (1960)

& W

[«



Polarons and Bipolarons in Jahn-Teller Crystals 869

12.
13.

14.
15.
16.
17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

3L
32
33.
34.
35.
36.
37.
38.
39.
40.

41.
42,

43,
44,
45.
46.

47.
48,
49.
50.
51
52.
53.

54.
55.
56.
57.

A.J. Millis, P.B. Littlewood, B.1. Shariman, Phys. Rev. Lett. 74 5144 (1995)

N. Mannella, A. Rosenhahn, C.H. Booth, S. Marchesini, B.S. Mun, S.-H. Yang, K. Ibrahim,
Y. Tomioka, C.S. Fadley, Phys. Rev. Lett. 92 166401 (2004)

Z. Popovic, S. Satpathy, Phys. Rev. Lett. 84 1603 (2000)

C. Ederer, C. Lin, A.J. Millis, Phys. Rev. B 76 155105 (2007)

A.P. Ramirez, J. Phys. : Condens. Matter 9, 8171 (1997)

A. Mareo, S. Yunoki, E. Dagotto, Science 283 2034 (1999)

Y. Tokura, in Colossal Magnetoresistive Oxides, ed. by Y. Tokura (Gordon & Breach,
Amsterdam, 2000)

Y. Tokura, N. Nagaosa, Science 288 462 (2000)

E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344 1 (2001)

M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73 583 (2001)

Y. Takada, T. Hotta, Int. J. Mod. Phys. B 15 4267 (2001)

J. van den Brink, D. Khomskii, Phys. Rev. B 63 140416(R) (2001)

T. Hotta, Y. Takada, H. Koizumi, Int. J. Mod. Phys. B 12 3437 (1998)

T. Hotta, Y. Takada, H. Koizumi, E. Dagotto, Phys. Rev. Lett. 84 2477 (2000)

Y. Takada, T. Hotta, H. Koizumi, Int. J. Mod. Phys. B 13 3778 (1999)

T. Holstein, Ann. Phys. 8 325 (1959)

C.M. Varma, J. Zaanen, K. Raghavachari, Science 254 989 (1991)

M. Schluter, M. Lannoo, M. Needels, G.A. Baraff, D. Tomanek, Phys. Rev. Lett. 68 526 (1992)
LI. Mazin, S.N. Rashkeev, V.P. Antropov, O. Jepsen, A.l. Liechtenstein, O.K. Andersen,
Phys. Rev. B. 45 5114 (1992)

S. Suzuki, K. Nakao, Phys. Rev. B. 52 14206 (1995)

A.P. Ramirez, Superconduct. Rev. 1 1 (1994)

M.P. Gelfand, Superconductivity Review 1 103 (1994)

O. Gunnarsson, Rev. Mod. Phys. 69 575 (1997)

L. Degiorgi, Adv. Phys. 47 207 (1998)

Y. Takada, T. Hotta, Int. J. Mod. Phys. B 12 3042 (1998)

B. Sundqvist, Adv. Phys. 48 1 (1999)

S. Suzuki, S. Okada, K. Nakao, J. Phys. Soc. Jpn. 69 2615 (2000)

O. Gunnarsson, Alkali-Doped Fullerides (World Scientific, Singapore, 2004)

T.W. Ebbesen, J.S. Tsai, K. Tanigaki, J. Tabuchi, Y. Shimakawa, Y. Kubo, I. Hirosawa,
J. Mizuki, Nature 355 620 (1992)

A.P. Ramirez, A.R. Kortan, M.J. Rosseinsky, S.J. Duclos, A.M. Mujsce, R.C. Haddon,
D.W. Murphy, A.V. Makhija, S.M. Zahurak, K.B. Lyons, Phys. Rev. Lett. 68 1058 (1992)
A.A. Zakhidov, K. Imaeda, D.M. Petty, K. Yakushi, H. Inokuchi, K. Kikuchi, I. Ikemoto,
S. Suzuki, Y. Achiba, Phys. Lett. A 164 355 (1992)

C.-C. Chen, C.M. Lieber, J. Am. Chem. Soc. 114, 3141 (1992)

W.L. McMillan, Phys. Rev. 167 331 (1968)

P.B. Allen, R.C. Dynes, Phys. Rev. B 12 905 (1975)

T. Yildirim, J.E. Fischer, R. Dinnebier, PW. Stephens, C.L. Lin, Solid State Commun. 93
269 (1995)

G.M. Eliashberg, Sov. Phys. JETP 11 696 (1960)

A.B. Migdal, Sov. Phys. JETP 7 996 (1958)

Y. Takada, J. Phys. Chem. Solids 54 1779 (1993)

O. Gunnarsson, G. Zwicknagl, Phys. Rev. Lett. 69 957 (1992)

N. Manini, E. Tosatti, A. Auerbach, Phys. Rev. B 49 13008 (1994)

L.F. Chibotaru, A. Ceulemans, Phys. Rev. B 53 15522 (1996)

C.C. Chancey, M.C.M. OfBrien, The Jahn-Teller Effect in Cgo and Other Icosahedral
Complexes (Princeton University Press, Princeton, 1997)

S. Wehrli, M. Sigrist, Phys. Rev. B 76 125419 (2007)

Y. Wang, R. Yamachika, A. Wachowiak, M. Grobis, M.F. Crommie, Nat. Mater. 7 194 (2008)
D.M. Deaven, D.S. Rokhsar, Phys. Rev. B 48 4114 (1993)

C.-C. Chen, C.M. Lieber, Science 259 655 (1993)



870 C. Hori and Y. Takada

58. M. Riccd, F. Gianferrari, D. Pontiroli, M. Belli, C. Bucci, T. Shiroka, Europhys. Leit. 81
57002 (2008)

59. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68 13 (1996)

60. J.E. Han, O. Gunnarsson, V.H. Crespi, Phys. Rev. Lett. 90 167006 (2003)

61. T. Yildirim, L. Barbedette, J.E. Fischer, C.L. Lin, J. Robert, P. Petit, T.T.M. Plastra,
Phys. Rev. Lett. 77 167 (1996)

62. E. Cappelluti, P. Paci, C. Grimaldi, L. Pietronerol, Phys. Rev. B 72, 054521 (2005)

63. Y. Takada, Physica C 364-365 71 (2001)

64. J.E. Han, E. Koch, O. Gunnarsson, Phys. Rev. Lett. 84 1276 (2000)

65. J.E. Han, O. Gunnarsson, Phys. B 292 196 (2000)

66. Y. Iwasa, H. Shimoda, T.T.M. Palstra, Y. Maniwa, O. Zhou, T. Mitani, Phys. Rev. B 53
R8836 (1996)

67. M. Capone, M. Fabrizio, C. Castellani, E. Tosatti, Science 296 2364 (2002)

68. M. Capone, M. Fabrizio, C. Castellani, E. Tosatti, Phys. Rev. Lett. 93 047001 (2004)

69. K. Tanigaki, I. Hirosawa, T.W. Ebbesen, J. Mizuki, J.S. Tsai, J. Phys. Chem. Solids 54
1645 (1993)

70. Y. Takada, Int. J. Mod. Phys. B 21 3138 (2007)

71. Y. Takada, J. Phys. Soc. Jpn. 65 3134 (1996)

72. Y. Takada, J. Phys. Soc. Jpn. 65 1544 (1996)

73. M.R. Schafroth, S.T. Butler, J.M. Blatt, Helv. Phys. Acta 30 93 (1957)

74. .M. Blatt Theory of Superconductivity (Academic, New York, 1964)

75. A.S. Alexandrov, J. Ranninger, Phys. Rev. B 23 1796 (1981)

76. A.S. Alexandrov, J. Ranninger, Phys. Rev. B 24 1164 (1981)

77. Y. Takada, Phys. Rev. B 26 1223 (1982)

78. A.S. Alexandrov, N.F. Mott, Polarons and Bipolarons (World Scientific, Singapore, 1995)

79. D.R. Pooler, J. Phys. A: Math. Gen. 11 1045 (1978)

80. I.G. Lang, Yu. A . Firsov, Sov. Phys. JETP 16 1301 (1963)

81. T.D. Lee, FE. Low, D. Pines, Phys. Rev. 90 297 (1953)

82. H. Frohlich, Phys. Rev. 79 845 (1950)

83. P.E. Kornilovitch, Phys. Rev. Lett. 81 5382 (1998)

84. E. Jeckelmann, S.R. White, Phys. Rev. B 57 6376 (1998)

85. J. Bonta, S.A. Trugman, I. Batisti&, Phys. Rev. B 60 1633 (1999)

86. J. Bon¢a, T. Katrasnik, S.A. Trugman, Phys. Rev. Lett. 84 3153 (2000)

87. S. Ciuchi, F. de Pasquale, S. Fratini, D. Feinberg, Phys. Rev. B 56, 4494 (1997)

88. A.S. Mishchenko, N.V. Prokof’ev, A. Sakamoto, B.V. Svistunov, Phys. Rev. B. 62 6317 (2000)

89. AS. Alexandrov (Ed.), Polarons in Advanced Materials: Springer scries in materials
science 103 (Canopus Publishing and Springer Gmbh, Bath, UK, 2607).

90. H. Fehske, R. Schneider, A. Weile (Eds.), Computational Many-Particle Physics (Springer,
Heidelberg, 2008)

91. K. -H. Héck, H. Nickisch, H. Thomas, Helv. Phys. Acta 56 237 (1983)

92. K. Ziegler, Phys. Rev. B 72 075120 (2005)

93. Y. Takada, Phys. Rev. B 61 8631 (2000)

94. P.E. Kornilovitch, Phys. Rev. Lett. 84 1551 (2000)

95. H. Barentzen, Eur. Phys. J. B 24 197 (2001)

96. S. El Shawish, J. Bonta, L.-C. Ku, S.A. Trugman, Phys. Rev. B 67, 014301 (2003).

97. S.A. Trugman, L.-C. Ku, J. Bon¢a, J. Supercond. 17, 193 (2004)

98. R. Ramakumar, S. Yarlagadda, Phys. Rev. B 69 104519 (2004)

99. H. Barentzen, J. Phys.: Condes. Matter 17 4713 (2005)

100. Y. Takada, M. Masaki, J. Mol. Struct. 838 207 (2007)

101. Y. Takada, M. Masaki, J. Supercond. Nov. Magn. 20 629 (2007)

102. H.C. Longuet-Higgins, U. OPik, M.H.L. Pryce, R.A. Sack, Proc. R. Soc. Lond. A244 | (1958)

103. W. Moffitt, W. Thorson, Phys. Rev. 108 1251 (1957)

104. M.C.M. O’Brien, J. Phys. A: Math. Gen. 22 1779 (1989)

105. Y.M. Liu, C.A. Bates, J.L. Dunn, V.Z. Polinger, J. Phys.: Condens. Matter 8 L523 (1996)



Polarons and Bipolarons in Jahn-Teller Crystals 871

106. T. Okuda, A. Asamitsu, Y. Tomioka, T. Kimura, Y. Taguchi, Y. Tokura, Phys. Rev. Lett. 81
3203 (1998)

107. A. Macridin, G.A. Sawatzky, M. Jarrell, Phys. Rev. B 69, 245111 (2004)

108. J.E. Han, O. Gunnarsson, Phys. B 292 196 (2000)

109. M. Fabrizio, E. Tosatti, Phys. Rev. B 55 13465 (1997)

110. J.E. Han, Phys. Rev. B 70 054513 (2004)

111. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62 113 (1990)

112. M. Schiré, M. Capone, M. Fabrizio, C. Castellani, Phys. Rev. B 77 104522 (2008)

113. J.E. Hirsch, E. Fradkin, Phys. Rev. B 27, 4302 (1983)

114. J.K. Freericks, Phys. Rev. B 48 3881 (1993)

115. M. Takahashi, Thermodynamics of One-dimensional Solvable Models (Cambridge University
Press, Cambridge, 1999)

116. D.C. Cabra, P. Pujol, in Quantum Magnetism, ed. by U. Schollwéck, J. Richter, D.J.J. Farnell,
R.F. Bishop. Lect. Notes Phys. 645 (Springer, Heidelberg, 2004), p. 253

117. A.J. Leggett, Phys. Fenn. 8 125 (1973)

118. F. Hébert, G.G. Batrouni, R.T. Scalettar, G. Schmid, M. Troyer, A. Dorneich, Phys. Rev. B,
65, 014513 (2001)

119. G. Schmid, S. Todo, M. Troyer, A. Dorneih, Phys. Rev. Lett. 88, 167208 (2002).

120. G.-H. Liu, H.-L. Wang, G.-S. Tian, Phys. Rev. B 77, 214418 (2008) and references therein



Index

Absorption bands, 609-611
Activation energy, 900
Adiabatic approximation, 101-104, 108-110
Adiabatic correction, 205, 219-220, 228, 233
Adiabatic potential energy, 690, 691
Adiabatic potential energy surfaces (APES),
283, 286, 287, 293, 297, 298,
305, 490492, 507, 691, 714-716,
720, 722
Adiabatic potentials, 562
Adiabatic representation, 216
Adiabatic surfaces, 561-562
Adiabatic-to-diabatic transformation (ADT),
283, 284
Amplitudes, 217, 218, 221-223, 230-233
Angular overlap model (AOM), 378, 397, 399,
407, 409411, 480, 692, 719
Anharmonic, 375, 376, 392, 408
Anthracene radical cation, 278-280, 301-306
Anti-adiabatic, 851-853, 855, 856, 862
Antiferrodistortive ordering, 696, 698, 699
Antiferro-orbital ordering (AFO), 857, 858,
860, 861
Antimeron, 887, 893, 896
Aromatic hydrocarbons, 277, 278, 291
Atomic vibronic coupling constant (AVCC),
110, 114-115
Attenuation
relaxation, 744, 747, 752, 755-757
resonant, 744, 747, 750, 752, 755-757
ultrasonic, 744, 750, 751, 756, 758

Backward, 220, 231

Benzene, 182, 184, 188-193, 277, 289-291,
293, 296, 301, 306

Benzene cation, 240, 241, 243-245, 252, 259,
260, 263, 271

Berry phase, 873-904

Berry phase factor, 21

Berry pseudo-rotation, 324, 335, 340
Binuclear metal clusters, 708
Bipolarons
high temperature superconductivity (HTS),
812-814, 816-819, 821, 823, 824,
826, 828, 831-836
JT bipolarons, 811-836
mobility, 824, 825
superconductivity (SC), 811-836
Bohr magneton, 80
Bond-centered clectron density, 707
Bond covalence, 471, 475, 478, 479
Bond lengths, 381, 383, 385, 406, 407
Born-Oppenheimer approximation, 101,
103-106, 201, 204, 210, 234
Bose-Einstein condensation (BEC), 845, 864
Brarching space, 171-173, 175, 176, 178-181
Breit-Pauli Hamiltonian, 80, 87
Breit-Pauli operator, 78-80, 85, 87, 91

Coo
and charge-transfer, 521, 523-524, 531
HOMO, 529
Hiickel molecular orbital (HMO), 532-533
LUMO, 523, 528, 529, 531, 544
STM Images of, 521, 530, 535, 538
Caesium titanium alum, 397401
Canonical shift transformation, 657, 664, 668
CaO WCu?¢, 386, 387
Charge ordering, 701, 706
Charge transfer, 462, 471, 478, 481
Charge-transfer energy gap, 881
Charge-transfer peak, 874
Chemical bonding, 687, 688, 697, 710,
719,722
Chemical potential, 120, 123
Cobaltocene (CoCp2), 132, 137, 138, 154,
157, 160, 161
Colossal magneto resistance, 705

907



908

Complete active space self-consistent field
(CASSCEF), 321, 323, 329, 330, 333,
334, 339, 340
Complexes, transition metal
Cull-Felll, 631, 641
cyanide, 621, 622, 631, 645
dinuclear, 631, 642, 648
[Fe(CN)6]3-, 630-631
oligonuclear, 622, 631, 646
Computational studies, 311, 316, 320-322,
326-341
Configuration coordinate approach, 348
Configuration interaction, 629, 630
Conical intersection (CI), 4, 14, 169-173,
176-184, 186, 191, 192, 195, 196,
201, 204, 206, 207, 209, 214, 215,
219, 226, 233, 235, 240, 246, 258,
259, 263, 269, 270, 277-280, 284,
285, 292, 296-301, 303, 305, 306
Cooperative, 492, 495, 499-501
Cooperative JT effect, 685-723
Cooperative pseudo JT effect, 707
Coriolis splitting, 12
Corner sharing octahedrons, 712
Coupled cluster calculations, 247, 273
Coupling, 201-235
exchange, 622, 623, 631, 632, 634, 635,
639, 643, 645-648
ferromagnetic, 623, 633, 642, 645
isotropic, 631-634, 643, 646
Jahn-Teller, 621-648
spin-orbit, 622, 628-629, 635, 639, 640,
642-648
vibronic, 623, 628, 630-632, 634, 640
Cross sections
differential, 202, 217, 233
Integral, 202, 222, 233, 234
Crude adiabatic approximation, 103-104,
106, 107
Crystal field
cubic, 349-357, 366
effects, 367
energy levels, 356
Hamiltonian, 349
interaction, 348
splitting, 356, 394
strength, 358, 360, 362
symmetry, 349
theory, 358
Cubic crystal
field, 350
states, 350
Cu(Il) doped MgO, 388, 404
CuOg, 813, 819, 821, 823, 826, 832

Index

Cuprates, 811-836, 873-904

Curie temperature, 701

Cyclopentadienyl radical (CsHs), 132,
146-149, 160

Deformation potential, 744, 754, 759, 761,
764, 765
Degeneracy analysis, 558-560
Delocalized electronic pair, 584-586
Density, 99-128
Density functional theory (DFT), 132, 136,
137, 140, 141, 143-158, 160, 161,
417, 418, 427, 433440, 442, 443,
451, 458460, 466468, 472, 473,
475, 471, 478, 622, 627-631, 633,
639, 647
Muitideterminental DFT, 132, 141,
146-148, 152, 154
Density function theory (DFT), 772
Diabatic (state, representation), 242, 243, 247,
252, 255, 257, 266, 267, 269, 272,
273
Diabatic and adiabatic representation, 216
Diabatic electronic states, 283, 288
Diabatic representation, 207, 215, 216, 219,
220, 223-227
Diabatic vibronic Hamiltonian, 303
Diagonalization of Hamiltonian matrix, 283,
288, 289, 293, 295, 299, 300, 304
Differential, 202, 210, 217, 224-225, 233, 234
Difficult, 424, 428
Diffraction, 493, 496, 498, 502, 503, 506, 507,
509, 510
Diffuse interstellar bands, 277, 280
Difluorobenzene cation, 268-269
Dimensionless normal coordinates, 285, 286,
296, 303
Dipolar instabilities, 421
Dirac-Coulomb Hamiltonian, 79
Dirac equation, 78
Directional order, 734-736, 741
Direct product representation, 58, 61, 68, 70
Displacement operator method, 656
Distortions
Jahn-Teller, 743, 744, 749-751
lattice, 744, 749, 753
tetragonal, 753, 754, 759
trigonal, 753, 766
Drude-like peak, 874-876, 884, 892
Durude-like peak, 891
Dynamic, 492, 495, 497, 499, 500
Dynamical matrix, 692, 694, 696
Dynamic JT effect, 108-110, 520, 542, 549
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Dynamic vibronic problem
tautomeric compounds, 607-608
valence tautomeric system, 608—609

E ® by, 689, 692, 694
E ® b, 696, 698, 715, 716
E ® by, 716
E®g¢, 538-543, 549
E®e, 696
E ® e case, 690, 718
E ® eg, 711, 715-717
E ® e Jahn-Teller system, 886
E ® e vibronic hamiltonian, 371-372
Easy axis, 708, 709
Effective density of carriers, 892, 893
Effective involving, 431
Effectively half-filled Mott insulator (EHMI),
885
Elastic coupling, 686, 687, 693, 711, 712, 714
Elastic energy, 690-692, 713
Elastic intercell coupling, 718, 720, 722
Elasticity theory, 745
Elastic modulus
adiabatic, 746, 748, 749, 751, 754
dynamic, 744, 748, 749, 753, 759, 760, 764
isothermal, 746, 748, 751, 753, 754, 761
relaxed, 748, 751, 759, 763, 764
Elastic order, ferrodistortive, 457
Elastic properties, 661
Electron energy bands, 702, 703
Electron hopping, 696, 701-707, 714, 719
Electronically excited molecules, 306
Electronic basis, 101-103
Electronic correlations, 812, 814,
816-819, 831
Electronic coupling, 565
Electronic function, 98, 117
Electronic Hamiltonian function, 102, 111
Electronic Raman, 386-388, 401403
Electronic spectra, 318, 319
Electronic wavefunction, 102, 104,
111-114, 117
Electron paramagnetic resonance, 630
Electron—-phonon interaction, 367
coupling, 359
interaction, 348
Electron pockets, 703, 704
Electron-strain interaction, 665, 667
Elementary excitations, 662, 664
Encirclement, 234
Energy
exchange, 633, 634, 642, 645, 647
free, 745, 754
internal, 745
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Energy loss function, 881
E-ph coupling, 823, 825, 826, 828, 829, 831,
834, 835
Epikernel, 332, 333, 339-341
Epikernel principle, 47, 59, 61, 62, 67-69, 71,
73-75, 311, 332, 376
Epikernel subgroup, 55
EPR spectra, 388, 398
Equations of motion method, 888, 890
Exchange
anisotropic, 631, 645-647
antisymmetric, 632, 633
ising, 644, 648
isotropic, 631-634, 643, 645-647
magnetic, 361, 622
symmetric, 632, 633, 647
Exchange coupling
double, 702, 708
Heisenberg, 701, 708, 709
Kramers-Anderson superexchange, 708
magnetic, 686, 696, 701, 702, 708-709
orbital, 686, 695, 697, 700, 708, 709, 711,
712,714,717,718,722
phonon-mediated orbital, 717
vibronic, 720, 721
Exchange interactions, 558-560
Excitons, 703
E x E Jahn-Teller effect, 81-85, 91
Extended X-ray absorption fine structure
(EXAFS), 420, 879, 880

Face sharing octahedrons, 710
Femtosecond UV laser excitation, 324
Fermi surface, 703, 877, 878
Ferro-and antiferroelectricity, 666-669
Ferrodistortive ordering, 693, 696, 698, 699
Ferroelastic ordering, 658
Ferroelectricity, vibronic theory of, 707
Ferro-electric phase transitions, 417
Ferromagpretic effect, 567
Feynman path integral, 203, 230
Fictitious magnetic field, 886, 894,
895, 900

Flat band, 738
Fluorescence dynamics, 241, 269-271
Foldy-Wouthuysen transformation, 78
Forward, 220, 225, 231
Franck-Condon factor, 17
Franck-Condon transitions, 569, 570
Frustration, 727-741
Fullerene

anions, 15

ions, 123-126
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Fulleride, 489-512

K3Ceo, 518, 531

K4Ceo, 518, 531

STMof, 518
Fulvene, 170, 171, 173, 181-184, 192
Functions to be multivalued, 207

Gauge invariant, 901

Gauge transformation, 900

Generalized gradient approximation(GGA),
433435, 441, 443

Geometric, 201-235

Geometric phase, 85, 89, 91, 201-235

Guanidinium Vanadium Sulphate, 401-403

Ham, 347-349, 356, 360-362, 366, 368-369
effect, 347, 349, 360-362, 366, 371,
394403
parameter, 361
quenching, 356
reduction factor, 347, 361, 368-369
theory, 361
Hamiltonian, 347-355, 357, 358, 360-362,
366, 367
crystal ficld, 348
diagonalize, 349
effective, 348, 357, 361
effective first- and second-order SO, 351
cffective second-order SO Hamiltonian,
351
effective second-order spin, 347
eigenvalues, 357
free ion, 349
matrix, 350, 353
matrix elements, 355
parameters, 353, 361
second-order effective SO, 360
second-order effective spin, 366
sccond order effective spin Hamiltonian,
355
spin—orbit, 349
vibronic, 367
Harmonic function, 887, 895
Harmonics, 210, 211
Heisenberg-Dirac-Van Vleck (HDVV), 558
Helicoidality, 659, 681
Helimann-Feynman theorem, 110, 112-113
Hidden JTE (HITE), 3-22
Higher-order terms, 375
High-spin/low-spin, 451-485
crossover, 453, 460, 462, 463, 471
equilibrium, 451, 460

Index

non-adiabatic seperation energy, 459, 469
vertical seperation energy, 456, 462, 466

High temperature superconductivity (HTS),
812-814, 816-819, 821, 823, 824,
826, 828, 831-836

Holstein bipolaron, 855

Holstein polaron, 852, 854

Holstein-Primakoff method, 888-890

Homotopes, 231

Hourglass-shaped dispersion, 876, 882, 890

Hourglass-shaped magnetic excitation
spectrum, 876, 882-892

Huang-Rhys factor, 359, 362

Hund energy, 702

Hund’s-rule coupling, inverted, 844, 862, 863

Hydrogen-Exchange reaction, 202, 203, 219

Hyperfine constants, 572-576

Hyperoctahedron, 44-47

Hyperspherical coordinates, 207, 231

Hyperspherical formalism, 209-211

Hyperspherical harmonics, 210, 211

Icosahedral system, 543
Icosahedron, 32, 36, 40-44, 48
Impurity

centres, 348

ion, 353, 357-359, 367

isolated, 348
Inelastic, 202, 216-218, 221, 233
Inelastic scattering, 216-218, 233
Instability, 416, 418, 419, 422, 426, 429, 430,

434441
Instant nuclear configuration, 562
Intercell elastic coupling, 686, 687, 693, 711,
712,714

Intermediate-spin state, 466
Intersection Space Hessian, 176-183
Intrinsic reaction coordinate, 154, 163
Ioffe-Regel-Mott limit, 876
IR spectroscopy, 317-318, 321
Isotope effect, 820-823
Isotropic exchange, 567
Itinerant electrons, 841, 867

Jacobi coordinates, 207, 212, 217, 219
Jahn-Teller

active, 360

active coordinate, 52, 57-59, 68, 70, 71,

73-75

active modes, 367

active normal mode, 355

coupling constant, 83
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distortion, 364
effect, 347-369
energy, 349, 360-362
Hamiltonian, 84, 88
instability, 686692, 696, 698, 700,
711,716
interaction, 349, 361, 562-565
intraction, 348
mode, 360
radius, 376, 383
selection rules, 86, 87
splittings, 777, 780, 793
stabilization energy, 347, 360, 362-365,
687,713,719
theorem, 26-29, 51, 89
Jahn-Teller and pseudo Jahn-Teller (PJT), 241
Jahn-Teller effect JTE), 4, 5, 7-13, 15, 18,
20-22, 77, 78, 81, 86, 91, 277,
284, 416, 429-432, 491493, 495,
497-503, 507-509, 512
C-F splittings, 775, 776, 783, 785-787,
789, 790, 794, 798
complex oxides, 800-802
cooperalive, 768-772
distortion, 769, 771, 773, 775, 778-781,
787, 793, 797, 805
exchange interactions and degeneracy
analysis, 558-560
ground state and adiabatic surfaces,
561-562
influence, 562565
intrinsic bonding defects, 772-776
molecular magetism, 556-557
MYV cluster, 565-601
vibronic interaction, 560-561
Jahn-Teller problem (Hx(g+2h)), 42
JT bipolaron, E ® e, 855
JT polarons, 705, 709, 717, 722
E ® ¢, 850, 852-854
T ®t, 850, 852

Keggin structure, 584-586
Kemel group, 54, 55, 74

Kernel subgroup, 54

Kitaev model, 737

Kramers degeneracy, 85, 89
Kugel-Khomskii model, 686, 722

Large polarons, 899

Lattice, 415-429, 432438, 441, 442
Lattice distortions, 819, 820, 827, 831, 833
LCAO method, 771
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Ligand field
d-d spectra, 456, 458, 466, 467, 471, 473,
475477
parameters, 458, 462, 463, 467, 471, 473,
475,482
Ligand field theory (LFT), 630
Linear vibronic constant, 750
Linear vibronic coupling, 107, 116, 124, 286
Local density approximation (LDA), 433
Local phase transitions, 425
Loop currents, 895-904

Magnetic anisotropy, 708
Magnetic exchange, 686, 695, 701, 702,
708-709
Magnetic memory cells, 706
Magnetic ordering, 705, 708, 709
Magnetic polarons, 701
Magnetism, single molecular, 621-623
Magnetoelectricity, 676-682
Magneto-or (and) electrostriction, 669
Magnetoresistance, 671, 673, 674, 676, 682
Magnons, 705, 706
Manganites, 703, 721
Mass enhancement factor, 851-854, 864
MATI spectra, 260-264
M-CO Bonding, 312-315
Mean-field, 693, 695
Mean field approximation, 693, 695
Mean-square displacement, 383
Mean squared relative displacement (MSRD),
881, 882
Meron, 887, 893, 896
Metaelasticity, 670, 671, 675
Metamagnetoelasticity and metamagnetis,
670-674
Method, 6pic and price, 625
Mexican hat, 89, 691, 715
Mid-IR peak, 874, 876
Mixed-valence (MV), 452, 465, 468, 471, 481
charge and structural ordering, 587-591
double exchange, 566-568
electronic coupling, 565
multimode Jahn-Teller problem, 580-586
Piepho-Krausz-Schatz model, 568-571
Robin and Day classification, 568-571
vibronic coupling, 565
vibronic effects, 576-580
Mobility, 899, 900
MO diagrams, 313
Molecular orbital cluster method, 879
Monofluorobenzene cation, 241, 259, 268, 270
Méssbauer spectra, 595
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Mott insulators, 874, 877

Mott-Jahn-Teller insulator, 492, 502, 508, 509,
512

Multi-configuration time-dependent Hartree
(MCTDH), 241, 249-251, 264, 265,
288, 294, 297, 299, 304

Multiferroics, 679, 681, 682

Multimode JT Effect, 132, 133, 147, 148, 152,
156-161, 432

Multi-state vibronic (coupling) Hamiltonian,
240, 241, 245-246, 271

Multivalued basis functions, 202

Nano-grain thin films, 768-777

Naphthalene radical cation, 278-280, 301-306

Néel temperature, 700, 701

Nephelauxetic effect, 464, 474, 475, 482

Nernst signals, 877, 879, 896-900

Nesting, 703, 704

Neutron, 493

Non-adiabatic coupling, 101, 104-106, 108,
110, 201-205, 282, 284, 291, 292,
295, 297-299, 304-306

Non-Berry pseudo-rotation, 319, 324, 333,
335, 340, 341

Nonmagnetic JT Mott insulator, 857

Nonradiative decay, 277, 280, 301-306

Nonreactive, 218, 222, 230, 234

Nonreactive scattering amplitudes, 218, 222

Normal coordinates, 87

Normal mode, 107, 121, 126-128

Nuclear magnetic resonance (NMR), 421,
424,428

Off-centre displacement, 416419, 423, 425,
426, 436, 440, 442

Off-diagonal coupling, 104, 105, 110

One-photon absorption, 325, 329

Optical absorption, 420, 423-426

Optical spectra, 348

Orbital compass model, 728, 730, 733-736

Orbital degeneracy, 25, 40

Orbital disorder, 697

Orbital disproportionation, 3, 10, 14-18,
21,22

Orbital exchange, 686, 695-698, 700, 709,
711-717, 719, 720, 722, 723

Orbitally degenerate metal ions, 576-580

Orbital ordering, 685-723

Orbital ordering approach (OOA), 685-723

Orbital ordering temperature, 732

Orbital pseudo spin, 697, 708, 717, 718, 722
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Orbiton liquid, 705
Orbitons, 705, 706
Orbit, splitting, 366
Order-by-fluctuation, 732, 741
Ordering of orbitals, 654, 673, 675, 676
Ordering patterns
antiferro, 695, 711
antiferrodistortive, 696-699
antiferromagnetic, 697
antiferromagnetically, 703
ferrodistortive, 693, 697, 699
ferroelectric, 706
ferromagnetic, 697, 703, 705
ferro type, 695, 711
helical, 710, 711
orbital, 695, 698-700, 708, 709, 711, 712
spin-canted, 708
Order parameter, 659, 661, 669, 672
Other subtler properties, 432
Outer valence Green’s functions, 287
Overlap integrals, 688, 689, 702, 712
Ozone, 3, 10-12

Pairing, 813, 816-820, 822, 824, 830, 833
Particle-exchange symmetry, 220-222
Partitioning, 714, 719, 722, 723
Partitioning the Hilbert space, 719
Pauli spin matrices, 80
Permutation groups, 44
Perovskites, 687, 698, 699, 702, 705-707,
709-711, 719, 721
Perturbation theory, 52, 57, 58, 75
PES extremal points, 57, 58, 60
Phase, 207, 211, 212, 220-222, 225,
232-234
Phase separation, 701
Phase transition, 457, 492, 500, 505, 507
magnetic, 695, 700, 701
metal-insulator, 702, 705
structural, 686, 698, 700, 701, 706, 710,
712,721
Phase velocity, 743, 744, 746, 749,
753-1755, 759
Phenide anion, 277, 289-292, 296
Phenylacetylene, 277, 279, 289-301
Phenylacetylere radical cation, 277, 279
Phenyl radical, 277, 279, 289-301
Photoactive coordinates, 185-187
Photochemistry, 169-198
Photochromic effect, 601-602
Photoelectron spectra, 240, 241
Photophysics, 169-198
Photostability, 277-280, 301, 304, 306
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Piepho-Krausz-Schatz model, 568-571
PKS vibronic coupling, 572
p"®h, 544
Point defects, 348
Point groups
icosahedral, 496
of symmetry, 52-55, 61
Polaron effective mass, 850
Polarons
J-T polaron, 811-836
mobility, 821, 825, 829, 831
Polycyclic aromatic hydrocarbons, 277, 279
Polymerization, 510-512
Potential barrier, 744, 752, 759, 761, 763,
765, 766
Potential energy curves, 459
Potential energy surface (PES), 55-57, 349,
357, 360, 362, 364, 366, 368,
375-378, 389, 393, 394, 406,
408411
Predissociation, 202, 204, 206, 216, 218,
225-230, 233, 234
Primitive lattice, 697, 704, 706, 709, 711, 719,
722,723
Pseudogap, 818, 822, 828
Pseudogap phase, 874-876, 896
Pseudo Jahn-Teller (PJT) effect, 4, 333-337,
340, 416, 432
Pseudo Jahn-Teller problem
adiabatic potentials, 604—606
Madssbauer spectra, 595-601
photochromic effect, 601-602
vibronic model, 602-604
Pseudorotation, 491, 493, 494, 497, 498, 501,
507, 508, 541-543, 546, 547
Pseudo spin, 848-849, 853, 859-861
orbital, 695, 697, 705, 708, 717, 718, 722
vibronic, 709, 718, 720-723
Pseudo-spin operator, 728, 736, 737

Quadratic, 375, 377, 387

Quadrupole-quadrupole coupling, 712

Quadrupole-quadrupole intersite interaction,
711

Quantum dynamics, 278, 302, 306

Quantum geometric phase, 886

Quasidynamical model, 591-595

Radiationless transitions, 17
Radical, 132, 137, 161

Random strains, 426

Rare-earth compounds, 686, 712
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Reaction paths, 231, 235

Reactive scattering amplitude, 218, 222,
223,230

Reduction factors, 709, 718

Reference configuration, 100, 103

Reference state, 100, 117

Relaxation, 17, 18

Relaxation time, 744, 747, 750-752, 757, 761,
763-765

Renner coupling constant, 91

Renner effect, 77, 91

Renner Hamiltonian, 90

Renner-Teller effects (RTE), 4, 5

Reorganization energy, 108, 116

Resolved vibronic spectrum, 277, 291,
296, 304

Resonances, 203, 218, 226, 228-230, 234

Resonance states, 741

Rydberg states, 216, 218, 225-230, 234

Scanning tunnelling microscopy (STM),
517-525, 528-543, 546-550
Scattering
amplitudes, 217, 222, 223, 230, 233
inelastic, 202, 216-218, 221, 233
non reactive, 218, 222
reactive, 202-204, 206, 210, 212, 215-223,
227, 228, 230-233
Schrédinger equation, 101, 103
Seams
curvature, 171
intersection, 169-176, 180, 183, 184
Sears resonances, 91
Second-Order Analysis, 169-176
Segregation, 510-511
Shift operator, 715
Shift transformation, 715, 716
Side sharing octahedrons, 712
Single molecule magnets (SMM), 556
Small polarons, 876, 879-882, 884, 885, 887,
892, 897-900
Solids, 417, 418, 421, 432, 433, 443
Spectral broadening, 289
Spectroscopy
clectron spin resonance, 510
energy loss, 494
gas-phase, 493
infrared, 506
mid-infrared, 505, 508
near infrared, 494, 505, 507, 509
nuclear magnetic resonance, 493
Raman, 494, 499, 506
Spin-based qubits, 558
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Spin Berry phase, 895

Spin crossover, 16-18, 22

Spin density wave (SDW), 857, 858, 860, 861

Spin double group, 81, 88, 90, 94

Spin-flip, 455, 458, 459, 471, 478, 484, 485

Spin-frustrated metal clusters, 557-565

Spin-frustrated triangular system, 560-561

Spin Hamiltonian, 888

Spin-orbit coupling, 78, 81-85, 89-91, 348

Spin-orbit interaction, 78, 347-350

Spin-orbit operator, 78-80, 83, 85, 86, 89-94

Spin-orbit splitting, 91, 348, 349

Spin ordering, 686, 695, 708

Spin vortex, 882, 884, 886, 8§90, 892, 895, 896,
901, 904

Spin vortices, 882-899, 901, 903, 904

Spin-wave excitations, 876877, 882, 888

Spontaneous polarization, 706, 707, 723

Square-planar system, 703, 704

Standard orientation, 496, 498, 502

State-to-state differential cross sections, 202,
234-235

Step-by-step descent in symmetry, 71, 75

Steric strain, 408

Strain, 745, 747-749, 751, 752, 759, 761,
764, 765

binding, 484
elastic, structural, 484

Stripe model, 882, 884

Stripes, 820, 828-831, 833, 834

Structural phase transitions, 654-656,
658-661, 664—666, 668, 669,
673, 675

Superconductivity (SC), 479-482, 811-836

Superhyperfine, 419, 429, 436, 438

Superstructures, 701

Surface hopping, 334, 335, 337

Surfaces, 517-550

Susceptibility, 424, 428

SXPS, 773, 771, 778, 783, 785, 786, 789,
794-801, 803-807

Symmetry-adapted group orbitals, 688, 691

Symmetry adapted linear combinations
(SALC), 770, 771, 774, 715, 7171,
778, 783, 786, 7817, 789, 795,
800-804

Symmetry breaking, 7

Symmetry-breaking instability, 688, 689

Symmetry characters, 53, 54, 58, 59

Symmetry considerations, 207-209

Symmetry descent paths, 60-67, 74

Symmetry selection rule, 245
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Tautomeric compounds, 607-608
Ty, 339, 340
T®e,, 716
Tensor
exchange, 633, 646, 647
g-tensor, 628, 629, 632, 634, 641, 642, 644,
646, 647
magnetic susceptibility, 644-646
zero-field splitting, 632, 633, 644, 646
Tetrachlorovanadium(IV) (VCly), 132, 139,
141-146, 157, 160
Tetrahedron, 31, 32, 34, 35
T®h, 536
Time-dependent electronic population,
264-265
Time-reversal operator, 81, 84, 85, 88, 90, 96
Time-reversal symmetry, 79
Timescale, 381, 386
TiO,, transition metal (TM)
band edge defects, 785-789
valence and conduction band, 781-785
Topological (Berry) phase, 12
Topology, 231
Transition metals, 761
Transition states, 203, 230, 231, 235
Tricorne, 715
Trifluorobenzene cation, 241, 246, 253, 254,
268, 270, 271
Triptycene, 390-394
T® ty, 721
Tunnelling, 417, 421, 424, 426
Tunnelling splitting, 706, 720-721, 750, 752,
759, 761, 763-765
Tutton salts, 403-407
Two-photon absorption, 325, 327, 329
T x T Jahn-Teller effect, 86

Ultrafast electron diffraction, 323
Ultrafast nonradiative dynamics, 279
Ultrafast relaxation, 322-327
Ultrasound measurements, 662

Valence tautomeric system, 608-609
Vector coupling coeffcients, 371-373, 397
Vector potential approach, 202, 207, 211-214,
221-223

Vertex corrections, 844, 853
Vertex function, 853
Vertex-sharing octahedrons, 699
Vibration 6 (C-C stretch), 149
Vibrational, 349-357, 368

energy, 347

frequencies, 357, 744, 753, 759, 765
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interaction, 362
modes, 347, 349-357
state, 355
Vibrations, 489-491, 493-499, 508, 510, 512
Vibron, 705, 717
Vibronic
amplification, 718, 723
angular momentum operator, 109, 110
coupling, 277-286, 288-306, 565
effects, 576-580
interaction, 560-561
model, 602-604
parameters
spectra, 279, 297, 303
Vibronic coupling, 416, 418, 420, 429-432,
437, 440, 443
dynamic, 457, 474
first order-JT, 452
Hamiltonian, 333, 337
higher order-JT, 453, 454
model, 242, 258
pseudo-JT, 452, 455
Vibronic coupling density analysis
Fukui and nuclear Fukui function, 119-123
structures, 117-119
vibronic energy levels, 380-382, 386-394
Vibronic Hamiltonian, 170
Vibronic Hamiltonian coupling, 99-101, 123,
124, 127
Vibronic interaction, 239-241, 270, 271
Vibronic mode, 744, 749, 753, 754, 765
Vibronic reduction factor, 709, 718
Vice-versa, 332
Vide supra, 322-326
Virtual bound resonance, 774, 777, 778, 788,
789, 792, 801
Virtual phonon exchange, 654, 656-659, 667,
673, 675, 677, 682
Virtual phonons, 716-720
von Neumann and Wigner, 172-174, 180
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Wave
acoustic, 743, 759
elastic, 743, 744
longitudinal, 747, 751-753, 756, 762, 764
running, 746, 755
shear, 747, 765
ultrasonic, 743, 748-750, 755, 756
Wavepacket dynamics, 287, 335, 338, 341, 342
Wave vector, 746, 747
Wigner—Eckart theorem, 107, 111, 137,
372-373
Winding number, 887, 896, 897, 901, 903

XANES, 704, 707

X-ray, 493, 498, 507, 510

X-ray absorption fine structure (XAFS), 385,
406, 407

X-ray absorption spectroscopy (XAS), 769,
771, 775, 7717, 778, 780-783,
786-795, 798-807

X-ray crystal structure, 692

X-ray diffraction, 704, 707

X-ray scattering, 700

Zeeman energy pattern, 564
Zeeman splitting, 563
Zener polaron, 705
zero-point vibrational, 17, 18
ZnSe

Ccrrt | 762, 763, 766

Fe?t, 762

Mn?t, 762

Ni2*t, 762

v+, 757,762
ZnTe:Ni2t, 765



	The_Jahn-Teller_Effect
	TheJahnTellerEffect_Koeppel
	2010年10月08日12時23分41秒
	2010年10月08日12時42分53秒




