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INTRODUCTION

Phenomena of superconductivity are very interesting from
both physical and technological points of view. Microscopically,
these phenomena stem from the condensation of a macroscopic
number of electron pairs. This electron pair is usually believed
to be formed by an attractive interaction brought about by the
virtual exchange of phonons between the electrons. In metallic
superconductors, this phonon mechanism of superconductivity is
confirmed experimentally. In addition, theoretical calculations
can reproduce the observed superconducting transition temperature
Tc well.

In low-carrier-concentration systems such as degenerate
semiconductors, however, the situation is a little different
from that in metals. The Fermi energy e_. becomes of the order

£

of the Debye energy w Since the conventional method to calculate

D*
Tc in metallic superconductors makes full use of the smallness

of the parameter mD/e we cannot apply this conventional method

f'
to the discussion of superconductivity in degenerate semiconductors
immediately. In particular, the idea of the Coulomb pseudo-

potential u* adopted in the usual theory of superconductivity in

metals does not seem to be appropriate to the case of WH™ Ec.



Thus in this thesis, we develop a new numerical method of
calculating T in which the effect of the Coulomb interaction
on superconductivity is taken into account much more accurately
than in the method hitherto applied to the calculation of T.-

The method presented here opens several new aspects of
the mechanisms of superconductivity. The effect of the plasmon
on superconductivity is studied quantitatively and the possibility
of the plasmon mechanism of superconductivity is considered
for the first time. The change of the contribution of phonons
to superconductivity with the increase of the parameter mD/ef
is examined. Superconductivity in multi-carrier systems is
discussed in order to make a guantitative study of the acoustic
plasmon mechanism of superconductivity. The interrelation of
the phonon, the plasmon, and the acoustic plasmon mechanisms of
superconductivity is also clarified.

The present thesis is organized as follows. In chapter I,
we formulate the new method to calculate Tc from the first
principles. Only the weak-coupling approximation is employed
in the derivation of the present method and Tc can be determined
without any adjustable parameters like u*. In the latter part
of this chapter, this method is applied to a quantitative inves-
tigation of the role of the plasmon in superconductivity in the
electron-gas system. In contrast with the case of phonons, the
plasmon induces a long-range attractive interaction between
electrons. When the carrier density of the system is low enough
to give the r_-parameter of the system larger than about six,

this attractive interaction becomes so large that even the



electron-gas system is suggested to become superconducting only
with the aid of the plasmon. The bound state of the Cooper pair
in this plasmon mechanism is a little different from that in the
phonon mechanism. This difference is shown by a simple physical
picture. In the end of this chapter, we make a discussion on the
validity of the plasmon mechanism of superconductivity from
various points of view and come to the conclusion that the
electron-gas system with r, % 6 has a superconducting instability
with the aid of the plasmon, provided that the system is not in
the ordered states with diagonal long-range order like the Wigner-
lattice one, but in the normal metallic state with a definite Fermi
surface.

Chapter II is devoted to the investigation of superconductivity
in polar semiconductors. A few workers have already studied
this problem, but none of them have noticed the importance of
the plasmon in these materials. Thus we include the contribution
of the plasmon and examine the interplay of the plasmon and the
polar optic phonon in the superconductivity. This general theory
is applied to the explanation of the superconductivity in semi-
conducting SrTiO3. SrTiO3 is a highly polarizable material and
the static dielectric constant becomes as large as lO4 at low
temperatures. By doping, we can have an n-type semiconducting

SrTiO3 whose carrier concentration n can be varied from ].Olacm—3

to 6x10200m_3. Superconductivity is observed in this material
and the dependence of TC on n and also on the stress is known

to be peculiar: As u is increased, Tc has a maximum of the order

of 0.3 X at n lozocm_B. Under the hydrostatic pressure, T8



decreases, while Tc increases when the uniaxial stress of the
order of 1 kb along the [100] direction is applied. 1In the
present thesis, this behavior is explained in the plasmon-
ferroelectric soft phonon mechanism of superconductivity. The
observed curve of Tc as a function of »n and the stress is
reproduced quite well by the first-principle calculation without
any adjustable parameters. This fact seems to support the
validity of the present theory.

In chapter III, the possibility of superconductivity in
an inversion layer at the Metal-Oxide-Semiconductor (MOS)
junction is investigated. In this MOS structure, the motion of
electrons perpendicular to the interface is quantized. Thus the
system has a two-dimensional character and the dispersion relation
of the plasmon is proportional to /q for small wave numbers g.
Owing to this property, the contribution of the plasmon to
superconductivity is larger in this system than in bulk ones,
which suggests that an MOS system may be a good one for the
observation of the plasmon mechanism of superconductivity. As
an example of real systems, an n-channel inversion layer at
the Si(lOO)/SiO2 interface is treated and is predicted to have
TC in the plasmon mechanism of the order of 1 mK, when the carrier

11

density is less than about 5x10 cm_z. In the latter part of

this chapter, superconductivity in a two-subband system is
discussed to investigate the effect‘of the acoustic plasmon which
is the characteristic collective mode in such a multi-carrier
system. The interplay of the plasmon and the acoustic plasmon

is also clarified. Results in chapters II and III lead us to



the conclusion that in low-carrier-concentration systems, the
effect of the plasmon on superconductivity should be taken into
account. In particular, when each energy of the modes in the
system is larger than the Fermi energy, the plasmon plays the
main role in superconductivity and other modes such as phonons
and acoustic plasmons, even if they exist, do not contribute

much to superconductivity.



CHAPTER 1

GENERAL ASPECTS OF MECHANISMS OF SUPERCONDUCTIVITY

Chapter I provides a basic knowledge about the mechanisms
of superconductivity. Following the brief review of a general
background of the thesis in §1, we describe the newly developed
numerical method to solve the gap equation in §2. 1In the last
part of this section, an analytically soluble model of the gap
equation is introduced to elucidate some conditions of the
occurrence of superconductivity. In §3, we investigate the
possibility of superconductivity in the electron-gas system
with the aid of the plasmon. One of the main interests of the
present thesis is the role of the plasmon in superconductivity,
the importance of which will be exemplified for real materials

in chapters II and III.



§1. A Physical Background of the Thesis

l-1. Origins of Superconductivity

Phenomena of superconductivity like the infinite electric

[1] [2]

conductivity and the Meissner effect originate from the

coherent quantum field on a macroscopic scale. The concept of

the coherent quantum field was first suggested by London[3],

[4], and established fairly

[5]

later improved by Ginzburg and Landau
well by the recent observation of the Josephson effect

[6]

Bardeen, Cooper and Schrieffer (BCS) revealed that the coherent

state was due to the condensation of electron pairs (Cooper

L7

pairs The microscopic origin of the formation of the Cooper
pair is believed to be an attractive interaction induced by the
virtual exchange of phonons between electrons. This phonon
mechanism of superconductivity is confirmed in many superconductors

(8] (9]

by the isotope effect and the tunneling experiment -

1-2. Calculation of Superconducting Transition Temperature

in Metals

Although the BCS theory has succeeded in explaining various
properties of superconductivity, it may still be called a phenome-
nological theory for the problem to calculate the transition
temperature Tc' because the coupling constant in the BCS
Hamiltonian is the parameter to be determined by the observed Tc.
In addition, the static interaction between electrons is negative

in this Hamiltonian, while the stability condition for the



crystalllo] requires that it should be positive. If it were
negative, the system would not be in the superconducting state,
but in other ordered states such as a charge-density-wave (CDW)
one.
. . X R [11]
An important contribution was made by Bogoliubov et al.

(12] to this point. They showed

and also by Morel and Anderson
that the effective interaction responsible for the formation of
the Cooper pair was not a static interaction but a dynamical one.
When one electron of the Cooper pair oscillates with a frequency
near a resonant frequency of the lattice, the ions vibrate to
overscreen the Coulomb repulsion to produce the attractive
potential in the neighbourhood of the electron. The other
electron of the pair sees this attractive potential, when it
oscillates with the same frequency. Of course, there also occur
the scatterings with the frequency much different from this
resonant frequency, but the probability of occurring the scatterings
of this kind is small. 1In this way, the Coulomb repulsion is
reduced and this physics has been treated by the Coulomb pseudo-
potential u*.[ll'12] The above dynamical process can be simulated
by the BCS Hamiltonian, so that various phenomena of super-
conductivity are accounted for on the basis of this Hamiltonian.

In order to calculate Tc from the microscopic point of
view, however, all these dynamical effects should be taken into

account properly. Theories for this task were formulated by

Eliashberg[l3] and Nambu[14], and their results were improved by
several authors!lz'ls'lsl Final completion has been given by

McMillanEl7] who calculated Tc of various metals within the framework



of the strong-coupling theory with the use of adjustable para-
meters, u* and az(Q)F(Q) (the phonon density of states F(Q) times
an average of the square of the electron-phonon matrix elements

aZ(Q), where @ is the energy variable).

1-3. Role of Parameter mD/Ef in Phonon Mechanism of Super-

conductivity

The parameter mD/Ef is of the order of 10—2 in usual metals,
where Wy and Ep are the Debye energy and the Fermi energy,
respectively. Therefore the Cooper pair is mainly formed by the
electrons very close to the Fermi surface. Since the degrees of
freedom of these electrons are restricted to two owing to the
presence of the Fermi surface, the relative motion of the pair has
a two-dimensional character. Thanks to this fact, a bound pair
can be created even by a weak short-range attractive potential,
because two-dimensional systems have a bound state even in a very
shallow attractive potential well, in contrast with the three-
dimensional ones.

Further, the small wD/sf value makes the calculation of Tc
easy in several points. First, the electron-phonon vertex cor-

(18] since

rections can be neglected, as pointed out by Migdal,
the lowest-order correction to the bare vertex is AmD/sf with

the usual definition of the dimensionless electron-phonon coupling
constant A and is negligible even when A is of the order of unity.
Secondly, the gap equation is tractable even in the strong-
coupling form owing to the fact that the self-energy part of the

single-particle Green's function and also the gap function are

independent of the momentum variable, that is, they depend only
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on the energy variable w when mD/Ef << 1. The last point is
connected with the calculation of the kernel in the gap eguation.
The effect of the phonon-mediated interaction on the kernel does
not vanish only near the Fermi surface, while that of the Coulomb
interaction extends beyond the Fermi energy. Thus in case of

wD/Ef << 1, it is effective in the solution of the gap equation

to treat these two interactions separately. From such a treatment,

the idea of the Coulomb pseudo-potential u* was born.

l-4. Comments on McMillan's Work

As reviewed in 1-3, the theory of McMillan made full use
of the smallness of the parameter wD/ef. Thus, when we deal
with the case of Wy v Eg, we cannot adopt his method immediately
and should pay some special attentions to both the physics of
the mechanism itself and the method of the calculation of Tc.
As for the Coulomb interaction, McMillan assumed that it did not
supply any help for the formation of the Cooper pair. He,
therefore, treated the effect of the Coulomb repulsion rather
crudely by introducing one adjustable parameter u*. Other
effects of the Coulomb interaction were considered at most to
renormalize the energy bands and the electron-phonon matrix

(19] It must be noted here that McMillan's method

elements.
cannot be regarded as the first-principle calculation in the
strict sense, since pu* is usually chosen to be able to account

for the observed Tc.

McMillan also noticed that TC was not expected



to exceed 30 K in the phonon mechanism. This led several people
to search the nonphonon mechanism of superconductivity, because
the original BCS theory does not exclude the possibility of other
mechanisms of superconductivity. An example of such theoretical

attempts is the exciton mechanism in one-dimensional polymeric

systems,[zo'Zl] in a thin metallic film sandwiched between layers

[22]

and in a thin metallic film
[23]

of a highly polarizable material,
coated on a simiconductor with a high dielectric constant.
Another example is the acoustic plasmon mechanism which has been
discussed in a transition metal with s- and d-electrons,[24_27]
and in a semimetal, or a degenerate semiconductor with an electron-

[28]

hole system. These authors predicted that TC was as high as
100 K for these mechanisms. However, we cannot accept these
results readily, because they calculated TC with the use of
similar methods to the McMillan's one in spite of the fact that
the energies of the exciton and the acoustic plasmon are both

as large as € Thus a further investigation is necessary to

£
treat these cases

1-5. A New Numerical Method to Solve the Gap Equation

In this thesis, we develop a new numerical method to solve
the gap equation which is applicable to a wide range of wo/ef'
where W, is the energy of the mode to be exchanged virtually
between electrons of the Cooper pair. 1In this method, we employ

only one approximation, Z.e., the weak-coupling approximation.

Since the idea of p* does not seem to hold for the case of mom €cr
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the Coulomb interaction is treated much more rigorously in this
method than in the conventional one, so that no adjustable para-
meters like u* are introduced. In this sense, the present method
enables us to make a quantitative study of Tc of superconductivity
from the first principles, even when wo/ef is not small compared
with unity. As to the weak-coupling approximation, we cannot
justify the validity to use it in every case. However, we can
check the applicability of this approximation by comparing Tc
obtained in the present method with wo in each case.

With the help of this new method, the present thesis aims
at studying the following four subjects about the mechanisms of
superconductivity. The first subject is to evaluate the effect
of the Coulomb ihteraction, in particular, that of the plasmon
on superconductivity precisely. The problem has never been
studied in details since the appearance of the BCS theory. The
second subject is to investigate the change of the contribution
of phonons as the parameter wD/ef is increased to be of the order
of unity. The third one is to examine the superconductivity in
a multi-carrier system. The effect of the acoustic plasmon
in a multi-carrier system is studied as an example of the
nonphonon mechanism of superconductivity. This study may also
throw light on the problem to obtain a high Tc superconductor.
The fourth subject is to make the interrelation of several
mechanisms clear, so that we can discuss the mechanisms to

determine T, quantitatively in a real superconductor.



1-6. Superconductivity in Degenerate Semiconductors
Semiconductors provide a very good system for the theo-

retical study of the subjects described in 1-5, although Tc of

these materials is in general low and the observed Tc is at most

in the range of 0.1 K.[29—3l]

The physical properties of semi-
conductors in the normal state such as the band structure are
understood better than those of metals. . The carrier concentration
n of the system can be changed over a wide range, as shown in

the examples discussed later. Thanks to this feature, we can

make a systematic study of 'I‘C with the change of mD/af' since

the parameter mD/Ef can be varied, for example, from about 0.1

to 10, in these systems. The controllability of »n also gives us

a great help for the determination of the main active modes to
cause the superconductivity in these materials. Besides, semi-
conductors are more favorable systems to obtain a multi-carrier
system than metals.

A similar study has already been done by M.L. Cohen[zg]
for several semiconductors. He studied the superconductivity in
multi-valley semiconductors and emphasized the importance of the
role of inter-valley phonon scatterings in these systems. His
method to solve the gap equation is analogous to the present
method, but it seems that it does not take a proper account of

a mode having the energy of the order of e This will be made

£

clearer in the following section (2-1).



1-7. Semiconducting SrTi0O, and MOS Inversion Layers

3
Among various degenerate semiconductors, the systems we will
treat in the thesis are the following two systems; semiconducting
SrTiO3 and inversion layers of Metal-Oxide-Semiconductor (MOS)
junctions. The normal properties of these systems have been
studied well, both experimentally and theoretically. The carrier
concentration n can be changed over a very wide range. In the

former case, n is varied from 101% cm 3 to 6x102° cm 3 by doping,

while in the latter one, n is from 1017 cm 2 to 1013 cm 2 by
changing the gate voltage.

Sr‘I‘iO3 is a highly polar material and is observed to have
an n-dependent Tc of the order of 0.1 K for n in the range from

8.SXl018 cm-3 to 3.0x1020 cm—3.[30'32]

Since none of other
materials have shown the superconducting behavior at such a low
n, it is supposed that the mechanism to cause the superconduc-
tivity in this material is very interesting. A detailed
discussions of this material are given in chapter II. We can
reproduce the experimental curve of T, as a function of n fairly
well by the first-principle calculation. The observed effects
of uniaxially applied stresses on Tc are also explained guanti-
tatively. It should be noted again that the quantitative
calculation is made without any adjustable parameters.

MOS systems are treated from various reasons, although
there is no definite experimental evidence of superconductivity

[33]

at present. Firstly, an n-channel inversion layer at the

Si(lOD)/SiO2 interface is a much simpler and a better known

system than semiconducting Sr'I‘iO3 and has been investigated



SO well[34]

that Tc can be predicted without any ambiguous para-
meters. The second reason is related to the gquasi-two-dimensionality
of the MOS system. In a two-dimensional system, the dispersion
relation of the plasmon for small wave numbers g is proportional

[37] and is different from that in bulk systems. We, thus,

to vq
investigate how this property is reflected in the contribution
of the plasmon to superconductivity. Thirdly, a multi-carrier
system can be realized easily in the MOS system by controlling

(36] [37] Thus the MOS

the gate voltage and the applied stress.
structure provides a very good system for the presence of the
acoustic plasmon mechanism of superconductivity. Quantitative
discussions on the prediction of Tc in this system will be given

in chapter III.



- 16 -

§2. Gap Equation

2-1. Preliminaries

Following the introduction of 1-5, the method to treat the
gap equation is developed in detail in §2. 1In the first place,
we relate the microscopic interaction to the kernel in the gap

equation by an analogous way to that of Kirzhnits et aZ.[38]

The kernel thus obtained is compared with that of Cohen[zgl in

the end of this subsection.

A. Hamiltonian

We consider electrons in an n-type degenerate semiconductor
with the valley degeneracy 9y although the results obtained here
apply also to holes in a p-type semiconductor. The Hamiltonian

of this system+ is written by
H = He -+ th, (2.1)

with

e 5.%” ifo zgggzzwv“"CmCzr'v’clr-zv'cmw (2.2)

and
+ 1 t
Hrh'_'zv W4 (Q%,a%,;\' 2 )t%%%, }i WP ( Qf+a,- -p- Qv *a —r-ai+r’+0i',v>
% + (2.3)
X C in' C ilplo' ,
T In this thesis, we use the units in which ¢ =4 = k. = 1.



where Cipc is the anihilation operator of the electron of the
momentum p with respect to the bottom of the valley and the spin
g in thé i-th valley whose single-particle energy Ep is supposed
to be independent of <%, VO(q) is the Fourier transform of the

Coulomb interaction given by
Vo) = 4Tfe1/)6°vz, (2.4)

with the dielectric constant k, an is the anihilation operator
of the phonon of the wave vector g and the v-th kind, wv(q) is

its energy, g is the matrix element of the electron-

ip,t'p',v
phonon interaction, and Qi is the wave vector of the bottom of

the 7-th valley. 1In eq.(2.2), the inter-valley exchange Coulomb

interactions are neglected, because the Fermi wave number pf =
1k
(3Tr2n/gv) A3

107 em-1

with the carrier concentration n is less than
in usual degenerate semiconductors to make pf/iQil £ 0.4,
from which the inter-valley exchange Coulomb interactions are

less than 10 © of the direck enes.

B. Basic equation

The anomalous Green's function, Fi(p,imp), defined by

3 iy T
F‘\ {Pa‘wr)= ‘x dc e’ f <TtC;P4~(T) C,‘_N,{O)>) (2.5)

0

with the usual definition of T and Cipo(T)' satisfies the

T
following gap equation at T = Tc:
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Fo(hivg)= = 6;(p,iwp) G <-e.~iw.»>Tu{,§,, Livleers i) For (Fhiuh) (2.6

with wp = wT(2p+l), where p is an integer,Gi(p,iwp) is the single-
particle Green's function, and Iii,(p,p';iwp,iwp,) is the
irreducible interaction of two particles which changes two
electrons in the Z'-th valley into those in the i-th one. 1In
order to proceed further, the weak-coupling approximation is
employed. Since we treat the case of wD/efml, the quasi-particle
picture cannot be used when the interaction is strong, but for

a weak interaction, Gi(p,iwp) can be written in the form of

|
G; (pivp) = ———— (2.7)

iy

WJ? - 6? .

The weak-coupling approximation also permits us to consider the

irreducible interaction to be of the form of
I;"' (P, P'; 1 ,fwr') = v;il (P*f" , le,—fw‘,') . (2.8)

This is because the contributions from complicated vertex cor-
rections are higher-order corrections of a weak interaction and
may be neglected even when mD/efwl.

With the use of egs.(2.7) and (2.8), eq.(2.6) can be
transformed into the form convenient to find the numerical solu-
tion for Tc. Performing the frequency sum in eq. (2.6) and making

the analytic continuation from imp to m+i0+ to use the retarded
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Green's function denoted by the superscript R, we can obtain

the following equation:

R \ d-w R | Df I S s
F (pw= mS — :Z‘,; Jmt lf'ul){\l—?.fw)) Vop-p' ) &ii

% {
|, Vi - Cewronn) (oo * wotom)

0+ WS40 D tw-w-

+ ey i) ( —— b )ﬂ/

W=-qL+Ww'-10 W-5+w'+ ot

(2.9)

where f(w') and n(R) are the Fermi and Bose distribution func-

tions, respectively, and the following relation is used:

V (%,w) = V(&)SLL"‘SO%' i 2:2' IW\VH'{% Q) (2.10)

This comes from the facts that V?i,(q,w) is analytic in the upper
w-plane and that V?i,(q,m) = V?i,(q,—m*)*. Since F? does not
depend on %, the suffix 7 for F? is deleted in eq.(2.9).

The kernel in the integral equation (2.9) is complicated
a little, but when we take the imaginary part of both sides of
eq. (2.9) and then integrate by the variable w, we can have a much

simpler equation as

At = -3 = G-2fug ) (Vi St Sm in Tn Vi (4.0
i 2161 " PR, SO0 e ien

a
+SD 240 Tw V;f: (p-p, ) (FC1G]) +ne))

x[ { 4 0 (\i|-n) £ fe-1g) 1§

l€pl +lepr[ +4L |€p| L+l lep| =521~ 16pl (2L
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where 6(x) is the Heaviside function, and A(p) is defined by
w
A(P) 2\6‘;\ S & Im F (an) (2.12)

In deriving eq.(2.12), Im FR(p,w) is approximated by nA(p)G(w—Iepl)
/2|ep|, since the quasi-particle picture holds well in the weak-
coupling superconductors.

The last three terms in eq.(2.11) may be neglected, if we
take the following points into consideration. The contribution
of Im V?i,(p-p',ﬂ) vanishes except that Q is near the energies
of the modes such as phonons and the plasmon. On the other hand,
Tc is much smaller than these energies in the weak-coupling super-
conductor. Thus the contribution of n(Q)*Im V ,(p p',R) is
always negligible. The term

R \ Blerl-) fo-lg)
Tm Vii/(P-P’.ﬂ-)’s(\ér‘)[lep\ﬂer'mz gl ue,,»-n—\e,J,(z,13)

is also small, because f(|ep.|) is not small only for eprv 0, but

when |Ep.| is very small, the term (2.13) becomes to be
-2 Tm V5, G2 $Cl6pD) 1) / (gl + L)

In this way, the gap equation to be solved becomes

Ap==-)" A(F/) — tanh— e?' Vf'l"

(2.14)

with the pairing interaction Vpp' defined by
’

0 © I Viv (-7,
V-1 42 | Zgq ImVir O ,
VH,. V PY)+£‘ so Tl.dS?. Perarrrr i (2.15)
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When the single-particle energy ep has the form of

2
o= /lamx — €4, (2.16)
with the effective mass m* and the Fermi energy €¢ eq. (2.14)
changes into
Aw=~{ O jpuh — A(w) K (ww') 2.17)
20! VAP /

_ef

where the momentum variable, p, is related to the energy variable,

w, through p = /2m*(m+ef$, and the kernel, K(w,w'), is defined by

' w&vvl | p+p! %d%

Equation (2.18) can be rewritten as

%

00

2y !

“__ Y 2 Tl +lw'| R, .

K 'y = 4P Sm»?d% Lﬁdﬂ n‘+uwlﬂus‘|)zv (i), (2.9
with
R R

Vigi =2 Viv g (2.20)

i

C. Comparison with Cohen's kernel

Equation (2.18), or (2.19), relates the microscopic inter-
action V?i,(q,iﬂ) to the kernel K(w,w'). This kernel is just

the same form as that obtained by Kirzhnits et aZ.,[38] but is
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[29] Cohen

different from that of Cohen. Cohen's kernel, K (w,0"),

was given by

3 (% o) (2.21)

Cohen

The difference between K(0,w') and K (0,w') is calculated

to be

K (0.0') — K c°9M\((’).t;.)')

wit f

.—..Z" %d%s L 9mV,~;: (.50 (

Py “ﬂ a4+ lm\-.)z)

/(2.22)
which shows that for |w'] ~ 0, the difference is negligibly
small, while for larger |w'|, in particular, for |w'| near the
energies of the modes such as phonons and the plasmon, the
difference is large. The same is also applied to the variable w.
In general, this difference has a large effect on Tc, when the
superconductivity is brought about by the mode having a large
energy. Thus, the results obtained by Cohen should be checked
for superconductors with the Debye energy Wy of the order of Ege
The difference of the conclusions arisen from the use of the
different kernels will be illustrated in chapter II by the study

of the superconductivity in SrTi03.

2-2. Method of Numerical Calculation

In the present subsection, we describe the numerical method



N,

to solve the gap equation (2.17) with the kernel (2.18), or

(2er9)rs

A. Modification of gap equation

Since it is hard to determine TC and the corresponding gap
function A(w) at the same time, the first step to solve eq.(2.17)
is to modify it into the form which permits us to treat A(w) and
TC separately. For this purpose, we take the procedure proposed

(39]

by Zubarev, which is wvalid in the weak-coupling superconductor.

The equation for the function ¢ (x), defined by
Px) = AR/ A0, (2.23)

with the variable x = w/ef is given by eq. (2.17) as

o) = _J TR €X'/ 2T) PUYK X X) 2t
Since ¢(0) is unity by its definition, we obtain
v | B "X o, (E6X/2T) PO K (0,X) i
By combining these two equations, we get
by = KO0/ Ag = | e D) tomh (e 11/ 27T, )
x [Kxx"y —K(x0 K(0,x2/2g 3, i

with

2_0 = K (0!0) .

(2.27)
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In eq. (2.26), the singularity at x' = 0 disappears. This permits
us to replace tanh(ef|x‘|/2Tc) by unity with a logarithmic accuracy

and ¢ (x) is determined by

o= K(x,0/2,= 1R 10y LK o> =000 K 10X /3o

(2.28)

With this ¢(x), Tc can be obtained with the use of eq. (2.25)

which is rewritten as

=-2 | [ M(éf X/21) —f o \fM(éle\/ZTc) Lkox>$x

o0
-] - S‘ -tk (K210 Poo K (0%,
(2.29)
As before, tanh(sflxl/zTc) can be replaced by unity in the second.

and third terms in eq. (2.29) and the first term can be integrated

easily. Thus we get the equation for Tc as

Te = 1134 €& exP{ QIS CLTCICUR ) SR

B. Change into matrix equation

The gap equation (2.17), or (2.28), is usually solved by
an iteration method,[17] but here, we change the integral equa-
tion into the matrix one and solve it by the calculation of the
inverse matrix. The integral in eq. (2.28) is performed by taking

X, for the upper limit of the integral and breaking up the
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). The spacing, §.

interval (-l,xm) into small ones, (x X. i
1

i, 1+1

varies with §i = (x;+x;,,)/2: For |xi| ~ 0, §; is 10_4, and for

141

|x;| larger than 0.1, |x;|/10. The gap function ¢ (x) is

1: =
assumed to be constant, ¢. in the interval (x. X.,.) and eq.
7, 1,71+

(2.28) leads to the following equation for ¢ = (¢i):
® = -7T¢, (2.31)
with

2y

i}

(2.32)

7

and
T = ( UKy = KiaKoy /23 (K =K3/2153) ),

(2.33)

where the subscript, 0, is so chosen that x, = 0 and K;.: is

g
defined by
Ky = ! Sx:‘“dx' K(x, X"
\ B — iy .
¢ Xiﬂ—xa X (2.34)

Equation (2.31) is solved to be
-~
e=(1+7) %, , (2.35)

with the unit matrix 1 and Tc is obtained as a function of X, as

T, = W34 & exp{ -A\-o-\-% J';“\'—\lYKao‘P [2g— 6 G4~ \xa\)]} (2.36)

with the use of eq.(2.30). As Xy is increased, Tc increases in

general, but the change of Tc with X is negligibly small for X



— oy

larger than 103. In the following calculations, x is taken to

be 104 and the size of the matrix J is 177x177.

C. Numerical computation of kernel

The most difficult problem arises from the calculation of
Kij' given by eq.(2.34) with the definition of K(x,x') in eq. (2.19).

Since pK(w,w') = p'K(w',w), we obtain an equation of
Sious = P- K“ / F 23
KJL i l.} + (2.37)

with 5i5 pf/_T¥§; and we can reduce our computational time to the
half. We, nevertheless, have to compute Kij for about 16000 points
in all. This is practically impossible, because it consumes too
much time to carry it out. Accordingly, Kirzhnits et al.[38] did
not enter intc the task of the numerical solution. This problem
would have been presumably the reason why Cohen used his kernel

Cohen

K (w,w'), defined by eq.(2.21), even though it was not correct.

The kernel KCOhen(w,m') can be calculated much more easily than
Klw,w').

In order to overcome this difficulty, we notice the fact
that Vgi,(q,im), and consequently K(w,w'), vary very slowly with
w and w', although the effective interaction V ;(g,w) changes
very much at w near the resonant frequencies of the modes such as
the phonons and the plasmon. Thanks to this property, we can take

the following strategy: We first choose as a set of {Kij} each

element of which is evaluated rigorously, that is,
xﬁ x r}_

( Zh
K‘\ T PL ra XJH"X
X oo W)+ ) @ | "in*T"‘ 3

4P Jy T @4 (W) _

f‘ﬂ = P\
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Fﬂ
\ } a = ¢ F NR -
> LR (5=FD V(3R 10
wiﬂ___w:a [ S\’} d% %* F\) [?) a)v %'{‘F,. }l, )
+ (- S;J-)J'F_

i b
Pl‘ﬂ ~ TH’:‘ ) S 2
+35 ), 5 b (R @ AACERLIRTATINE 1Y V(‘is‘ﬂ()] ),

2.38)

fi

ds- (-7 (5= 15 V "=\, 50

where W, = EeXyv ij pr 1+ xj and

OR(%,IYL)E VRQ%.LQ)“VO(%). (2.39)

Then we calculate the rest of Kij by the interpolation of them.
After several trials to obtain a proper set of { Kij i

it is found that every eighth point of i and j should be chosen

for the set and that every point near the Fermi surface and almost

all the diagonal points, Z.e., the points of 1 = 7 should be

added to them. As a result, the number of elements of { Kij 1

becomes about three hundred and it takes ca. 250 seconds to

compute every element of the matrix J with the use of HITAC

8800/8700 at the Computer Centre of the University of Tokyo.

2=35 Analytic Solution

In this subsection, we give a few examples of the approximate
solution of the gap equation in order to clarify the physics of
the mechanisms of superconductivity, in particular, the importance

of considering the effective interaction dynamically. The first
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[12] and the second one

example is due to Morel and Anderson
is proposed in this thesis to improve their model. The latter
model is applied to the electron-phonon system. The relation
between the kernel, defined by eq.(2.18), and the dimensionless
electron-phonon coupling constant A, defined as usual, is obtained
and the maximum Tc is examined under several assumptions. In

the last part of this subsection, we comment on the requirements
for the mode with the energy of the order of €¢ to cause super-

conductivity and also for the single-particle state to show a

superconducting behavior.

A. Morel-Anderson model

In the conventional theory of superconductivity, the effective
interaction VR(q,w) is devided into two parts. One is the contri-
bution of the Coulomb interaction and the other is that of phonons.
These two will be denoted by Vc(q,w) and Vph(q,w), respectively.

In accordance with this, the kernel, defined by eq.(2.18), is

separated into two as

p+p’ 0 VC(% Q)
C , m* 0 2 gm L]
K™ ()= LT P S‘P‘?'l %M‘[V ('%)+ goﬁ'd'ﬂ' 524w How' ] (2.40)
and
K™ (bw)= ey T Qe (2.41)

These kernels are usually approximated as
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KEwwy= B (e~ B e —wh)

(2.42)

and

Kf’e‘(w‘w‘) = -\ f(wp=w) O(wp- 1D

{2443

respectively, where the Coulomb parameter p is given by

f
%(+ 21%

*Lz 4 Pe go %M\ VCW):O), (2.44)

and A is defined with the use of the Eliashberg's function[l3]
az(m)F(w) as
Ve
2
)\ = z_f —-—-—d:)) D(Lw)F(w)/

o (2.45)

with

3 > 2ff l pA
o) Fw) = - -ET"—”F;-J §g < Iml/ (3,00)

(2.46)

Putting K(w,w') = Kc(m,m') + Kph(w,w'), defined by egs. (2.42)
and (2.43), into eq.(2.28) and noticing ADE B - A, we obtain ¢ (x)
readily as

ot o WIE,,
i
—m— ! fo XollXI£1,

0 )fﬂxM}

(2.47)

I

P (x)
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where X = wD/sf is assumed to be less than unity and the

Coulomb pseudo-potential u* is given by
\A*=1VL/[\+}/‘-J?MI/10]_ (2.48)

With the use of this ¢(x) and eq. (2.30), Tc is calculated to be

LY
i =il ]34 €4 eXP{TZI‘A—[ [ + —ﬁ%}-{fm;—a]—,&}%}
=1L134w, exP{—- Y l " } (2.49)

which is just the result obtained by Morel and Anderson.
The example presented here elucidates the physics as to
how the occurrence of superconductivity is compatible with the

stability condition for the crystal[lo]

which requires that

M should be larger than A. The kernel K(w,w') is always positive
when p is larger than X, but this does not cause any difficulties.
The important point is how the kernel K(w,w') changes with the
change of the energy variables w and w'. The phonons make the

kernel small, if |w| and |w'| are both smaller than w_., while

D
the kernel becomes large, when |w| and/or |w'| are in the range
from wh to €g- The gap function also changes in accordance with
this behavior of the kernel. 1In particular, it should be noted
that the gap function does not vanish even for the energy variable
w larger than W - When the Cooper pair is scattered into this
energy region where only the Coulomb repulsion is present, the

phase of the coherent oscillation of the pair is changed by a

factor of m, as indicated by the change in the sign of the gap



i

function in eq.(2.47). Owing to this effect, the effective
Coulomb repulsion is reduced from p to p* and the effective
interaction between the electrons of the Cooper pair can be
evaluated by A - p*. Therefore, even though A is smaller than u,
superconductivity arises if ) is larger than u*.

The above discussion shows explicitly that the gap function

in the part of |w| > w  also plays an important role in the

D

occurrence 6f superconductivity. Consequently, we have to calculate
this part of the gap function accurately as well as the part of

|w| < w. in order to obtain a correct u*, that is, in order to

D
evaluate Tc from the first principles. In this respect, both

(6] [EETA

the BCS theory and the McMillan's theory are incomplete,

because in their theories, the gap function was assumed to vanish

when the energy variable exceeds w_ and p* was introduced as an

D

adjustable parameter.

B. New model

As clarified in 2-3.A, the appearance of superconductivity
does not depend on whether the kernel at the Fermi surface is
negative, or not, but on how the kernel K(w,w') changes with the
energy variables w and w'. Thus we have to treat a more realistic
kernel than the Morel-Anderson model in order to obtain a deeper
knowledge of the mechanism of superconductivity. For such a

purpose, a model for the kernel is proposed here as

K, x> =025 +Foo +Fad ) g(1-1x1) BCi-11), (2.50)
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where F(x) is free from all the restrictions except that F(0) = 0.
When we substitute this kernel into eq.(2.28), the gap function

is easily solved to be

I+ (F>
CP(X):[‘\— <F2>‘lo F(X)]Q(I IX\), (2.51)

with the notation < A >, defined by

\ |
CAD E[ dx_ Al . (2.52)
=1 21X\

The condition for the appearance of superconductivity is given by

CF2> > X, (2.53)
and Tc is solved to be
Te= 1134 & exp (= (<> /(e y - 0], (2.54)

When F(x) is proportional to |x|% with a positive o, < F2 >

is calculated to be F(l)2/2a, which leads the condition (2.53) to

[K(1,0) = K(0,0) 3% > 2a K (0,0) | (2.55)

According to this inequality, it is favorable for the presence
of superconductivity to have a small a for a positive K(0,0),.
which means that the kernel should change steeply near the

Fermi surface as the energy variable is increased.
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C. Application to electron-phonon systems

We apply the model mentioned above to the electron-phonon
system defined by the Hamiltonian (2.1). The effective inter-

action VR(q,w) in this system may be written as
R 0
Vigw= V& / ERC%,QJ), (2.56)

with the dielectric function ER(q,w}, which is assumed to be

Rt 0 o)
M) = 1+ VDT (f.0)+ ZV Wyl — W 16" (2.57)

where II(q,w) is the electronic polarization function, and fu(q)
is related to the oscillator strength of the v-th phonon and

can be calculated with the use of the electron-phonon inter-

action g%p LB Equation (2.56) with eq.(2.57) gives the
contribution of the phonons to Im VR(q,w) as
B(W=wp() 7
pr )Z — {®
-_-—— v
m V' (W) A (5 05, ($) / (2.58)

where Gv(q) and fU(q) are the quantities renormalized by the
Coulomb interactions. For w << Egr the kernel defined by eq. (2.18)

becomes

K00 = Xg + Fx,

with

(2.59)

%{* 2ff o~ ~N 2 ‘
)05 }/('— QTZF;-]" %dz VO(%)E ]LUHJ)/ wyti)/ (2.60)._
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and I-i
2F l

F(w) = %{%— Soﬁ%d% VOL%)SV-' g}:? \wl*“%%) (2.61)
where L is defined by eg.(2.44). When & (q) does not depend on
4, A, and F(w) have the following forms as

ez
and

T = Zu Ay mf\a’u ! (2has)
respectively, with the definition of A as

A= —4% S:?T %A%VOIL%)?V D/ 0F (2.64)

In the following, we assume that only one branch of phonons

is present. For |w| much smaller than @, F(w) becomes

Ay
Flw = — \w\/ (2.65)
Wy
which tells us that A“ can be readily known from F (w), although
the static interaction AO does not give us a definite value of
AV. This again shows the importance of treating the effective

interaction dynamically. Inequality (2.53) with F(x), given by
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F(X) = )\,) X\ = LNUV/E
2 : f J

X\ + X (2.66)
reads that
M )i iR ey (2.67)
and the trans.ition temterature is obtained as
Te = 1134 W, exp E‘\/)BC,S i (2.68)
where the function g(x) is defined by
akX)“—“)QM —1% = T\"\X— ) (2.69)
and the BCS coupling constant Ay.s is given by
Mges = (0% JUu) + x =),/ LUy 2227
— Oy 30D~ Am Vaw ) il

Inequality (2.67) suggests that for the presence of super-
conductivity, A“ and Ef/&v should be large. If we can change
&U independently of Av and assume p = Av' the maximum TC is
obtained as

max =
T = Laeey epl-4 —E T a0
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for x,® exp(-2-1/u). Since the typical value of u is 0.5, Tgax

becomes of the order of 1 K for the case of g Vv 10 ev.

Now, we make some comments on the above discussions.
Although all the results are obtained under the assumption that
&v(q) is independent of q, we have to take its g-dependence into
account in real materials. In addition, &v(q) cannot be changed
without changing Ev(q) in actual situations. Further, although we
have assumed that only one mode is present in the system, it is
often the case that several modes are present. Equation (2.62)
for AO implies that every mode works additionally, but Tc cannot
be determinéd only by the quantities at the Fermi surface. Thus
the interplay of several modes is the problem to be studied more
carefully. All these problems are investigated numerically in the
following sections on the basis of the method described in the

previous subsection.

D. Discussions on mechanisms of superconductivity and single-

particle states

Here, we make a qualitative discussion on the requirement
for the mode with the energy wy of the order of € to bring about
superconductivity. As eq.(2.64) indicates, a large Wy leads to
a small X and is disadvantageous for superconductivity. Physically,
when wo/ef is increased, the degrees of freedom of the relative
motion of the Cooper pair increase from two to three and the binding
energy of the pair decreases for the short-range attraction.
As a result, in order for a mode of w.n €g to contribute to super-

0
conductivity, the mode should induce either a very strong
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short-range attraction or a long-range one. When the latter
condition is satisfied, the mode has a strong coupling constant
for small g and makes A in eq. (2.64) large by the contribution
of the region of g n 0.

We should not misunderstand that for the case of mom Eer
electrons of |epl v e£. have a large contribution to the macro-
scopic coherent field Y. Even in such a case, | is constructed
only by electrons of lep| v 0. One way to understand this is
to remember that in usual weak-coupling superconductors, Y can
be characterized only by the energy gap at T = 0, A .= 1.75 Tc’

0

and that the Debye energy w_ does not appear. Another is to

D
observe that in the superconducting state, ap changes into

Ep/ll +A(p)2/ep2 with the gap function A(p), defined by eq.(2.12),

which shows that only the electrons for |Ep| < A_ experience a

0
great change by the phase transition. The role of the gap

0 is not to make the single-particle

state of its own change, but to help the electrons near the Fermi

function A(p) for |£P| >> A

surface become superconducting, as discussed in 2-3.A. This is
the reason why the BCS theory explains phenomena of superconductivity
well, although it is not correct in the sense that the gap function
does not vanish only near the Fermi surface in the BCS theory.

The foregoing discussion imposes a restriction to the
single-particle states near the Fermi surface. Since a macro-
scopic number of pairs is necessary to construct ¥, a number of
the single-particle states near the Fermi surface should be
macroscopically large, as is the case with the normal metallic

phase. In order to illustrate this, we consider the CDW state,



2ol

in which the single-particle energy EEDW is given by

CDW '\/ 2 2
E«P = S%VL (.EF) ACDW i EP ) (2.72)
where ACDW is the energy gap in the CDW state, Ep is defined by

eqg.(2.16), and the function sgn(x) is defined as

| X >0

! !

__\ X<0 i (2.73)

sgn (X) =

Since we choose eq.(2.72) for the single-particle energy

instead of eq.(2.16), we have to return to the gap equation (2.14).

CDWI

Because of |€P v ACDW near the Fermi surface, the pairing

interaction V given by eg.(2.15), is independent of p and

PP,
p'. That isi; Vp p! does not show any change as p and p' are
r
changed. As we have learned in the present subsection, such

an interaction does not cause superconductivity and the CDW
state does not show a superconducting behavior. This argument
also applies to any single-particle state in which a number of

the levels near the Fermi level is not macroscopic.



§3. Roles of Plasmon in Superconductivity

3-1. Introduction

A. Motivation

Since the BCS theory, the Coulomb interaction has not usually
been considered to give any contribution to the formation of the
Cooper pair, because it is repulsive. As a result, the treat-
ment of this interaction has been much simpler than that of the
phonon-mediated interaction in the theory of superconductivity.

All the effects of the Coulomb interaction are estimated by one
adjustable parameter p*, as we have pointed out in §1.

To the author's knowledge, however, it has not proved
conclusively that the Coulomb interaction alone never gives rise
to superconductivity. On the contrary, the electron-gas system
without phonons has a possibility to be superconducting with the
aid of the plasmon, since the dynamical interaction, which we
should consider for the formation of the pair, is actually attrac-
tive at the frequency w near that of the plasmon mp for small
wave numbers. Cohen, who did not employ the idea of p* and treated
the Coulomb interaction more seriouslyfzg] also speculated that
the plasmon might have some effects on the occurrence of super-
conductivity!40] although he did not consider that the plasmon alone

could cause superconductivity. Cohen's method, however, does not

seem to be applicable to this problem owing to wp v Egy as mentioned

58]

in 2-1.C. Therefore, we should make a more detailed investigation

into the plasmon mechanism of superconductivity in the electron-

gas system having only the Coulomb interactions with the use of

the new method in 2-2.
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B. Plasmon mechanism of superconductivity

When we consider the plasmon mechanism of superconductivity,
we readily notice a difference between this mechanism and the
phonon one. Phonons are the vibrations of the lattice system,
while the plasmon originates from the electron system itself,
which means that the superconductivity arises from the internal
force in the plasmon mechanism. This, however, will not cause
any difficuléies, considering that the internal force gives rise
to superfluidity in 3He in which the paramagnon plays an impor-

tant role.[4l]

[42]

In addition, according to the theory of Bohm and
Pines, an assembly of electrons with the Coulomb interactions
can be divided into two components. One is the part of the
collective fields (plasmon) and the other is that of individual
particles which interact with the collective fields and with one
another via short-range screened Coulomb repulsions. If we
consider the Cooper pair of the individual particles in the
polarizable medium of the collective fields, the situation is
just the same as that in the phonon mechanism.

We, nevertheless, has to recognize another difference. 1In
usual materials, wp/ef'is of the order of unity. This is a
marked difference from the phonon mechanism in metals in which
wD/sf is very small. Further, in contrast with the phonon mechanism,
the range of the attractive interaction is long in the plasmon
mechanism and this will produce a new type of the bound state
of the pair. As we have discussed in 2-3.D, these two problems
are related to each other -and the long-range nature of the
attractive interaction helps in constructing the pair when wp/efm 1.

In order to make this point clearer, the present section
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is devoted to the plasmon mechanism of superconductivity in the
electron-gas system described by the Hamiltonian Hy o given by

eq. (2.2).

C. Organization of §3

This section proceeds as follows. In 3-2, calculations of
Tc in the plasmon mechanism of superconductivity are done with
the use of the effective interaction in the plasmon-pole approx-

imation[43'44]

and also in the RPA. The physical picture of this
mechanism is considered in 3-3, in which particular attention is
paid to the long-range property of the plasmon-mediated attrac-
tion. In 3-4, we discuss the problems as to the validity of the
plasmon mechanism of superconductivity from various points of view.
The topics to be treated are the numerical evaluation of the
effects of vertex corrections and strong coupling, the consider-
ation of the disadvantageous effects like the disorders in actual
materials and a presence of other ordered states such as the

Wigner-lattice state,[45]

and the discussion on the possibility
to find a real system in which the plasmon has a very large con-

tribution to the superconductivity.

3-2. Calculation without Vertex Corrections

Since we have no information about the plasmon mechanism
of superconductivity at present, we begin to study this mechanism
of superconductivity with the use of the lowest-order approximation

to the effective interaction for the sake of simplicity. In the
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first part of this subsection, we employ the plasmon-pole approx-

imation[43'44]

to obtain analytic solutions with the use of the
method described in 2-3.B. Then we show the numerical results

in this approximation and also in the RPA.

A. Plasmon-pole approximation

In the plasmon-pole approximation, the excitation spectrum
of the system is replaced by a single mode ip(q) which approaches

to Wy, for small g and Im VR(q,m) has the form:
2 ~s
Im VRG,w)=—TWp S(w- &7 w) VOB, (3.1)

with

(,U?"—; fJWnel/PCW\*/

(32:2)

where the factor in front of the delta-function is determined with
the aid of the f-sum rule. When eg. (3.1) is substituted into
the Kramers-Kronig relation (2.10) and w is taken to be zero,

we obtain the relation between &p(q) and w, as

B = wp /4 1- VRGOA). (3.3)

There are several ways to give the static interaction VR(Q:O);
but for the time being, we take VR(q, 0) to be the Thomas-Fermi

approximation:

VR(%‘O) = 4we* /yc W)l'* qb;F ) ; (3.4)
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with the inverse of the Thomas-Fermi screening length dpp
r

defined by

%TF=IJ43VQZM*H‘/TPC . (3.5)

B. Analytic results

When eq. (3.1) with egs. (3.3) and (3.4) is put into eq. (2.18),
the kernel can be integrated easily and every element of Kij,
defined by eq. (2.34), can be obtained without resort to the
interpolation method, discussed in 2-2.C. An example of the
calculated kernel K(x,x') is shown in Fig. 3.1 by the solid line.
Although the Coulomb kernel has usually been approximated by a
constant as indicated by eq. (2.42), the actual kernel is far
from a constant even near the Fermi surface. In order to see

the origin of this difference, the approximate form of K(x,x')

is calculated for small |x| and |x']| as

b o et B
b WKL) Iy —4
kM s o T 5 v s Sk T ket

K(x,x")=

The second term in eq. (3.6) stems from the plasmon and makes the
kernel vary rather steeply. Because of the long-range nature of
the plasmon-mediated attraction, there is a logarithmic singularity
at x = x' # 0. This singularity is taken into account in the

gap equation by the procedure, described in 2-2, in which K(x,x")

is integrated by x' as shown in eq. (2.34).
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An example of the calculated kernel K(x,x') and the

corresponding gap function A(x). Solid curves represent

the results in the plasmon-pole approximation, given by
egs. (3.1)-(3.4), while broken curves show those obtained
by the approximate procedure, given in egs. (2.50)-(2.54),

with the use of F(x) defined in eq.(3.7).
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Now, we apply the criteria for superconductivity obtained
in 2-3.B to the present case. Considering the behavior of

K(x,X') in eq. (3.6), we can take F(X) as

Fooy= w—— B 4 =0, we"_ \x\J?M 4

3v b5 (3.7)
where ry parameter is defined as usual by
o= M (2"

An example of the kernel obtained by eq. (2.50) and the gap
function ¢(x) given by eq. (2.51) with F(x) in eq. (3.7) is plotted
in Fig. 3.1 by the broken lines. Inequality (2.53) gives the

condition for the appearance of superconductivity as

s 2 6, (3.9)

for the case of g, = 1.

Compared with eq. (2.65), eq.(3.7) also gives us the
dimensionless coupling constant Ap for the plasmon mechanism as
oC

)P 3V I's (3.10)

with the use of the relation of

Wp/€s = 0.940 ‘3\7’ Ys . (3.11)
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Equation (3.10) indicates that the plasmon contributes to the
superconductivity for every rs’ although in the usual metals
whose largest r, value is 5.62 in Cs, the contribution is not

so large as to cause superconductivity. Therefore, in the usual
superconductors in which ry values are in the range from 1.6 to
2.7,[46] the role of the plasmon is at most to give some help
to phonons and is included in the adjustable parameter u*

effectively.

C. Numerical results

Now, we turn to the numerical solutions. An example of
the gap function ¢(x) = A(x)/A(0) is shown in Fig. 3.1 by the
solid line which corresponds to the kernel in Fig. 3.1.

The results of '1‘c are plotted in Fig. 3.2 as a function of r

for several values of m*, k, and g, All these curves of Tc
behave in the similar way: As rg is increased, Tc increases
abruptly first and then decreases gradually. The reason of this
behavior will be clarified in 3-3. 1In order to estimate the

BCS coupling constant A?CS of this mechanism, we express Tc in

the form:

BCS )

Te = 1134 Wy exp (=1 /g

(3.12)

The results of ASCS are illustrated as a function of ry for

a few values of g, in Fig. 3.3 by solid lines, while the broken

BCS

line represents the approximate one of A with the use of

eq.(2.54) and F(x) defined by eq.(3.7). With the increase of
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Fig.3.3. Calculated results of the BCS coupling constant in the
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by the analytically soluble model described in 2-3.B
with F(x) in eq.(3.7). When r, is decreased, Agcs
becomes negative, which means the absence of the super-

conductivity in this mechanism.
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Lo ASCS increases first, but when T becomes larger than 50,

A:CS is nearly constant. This leads us to the relation of

Tc « wp for r, 2 50. In any case, the magnitude of Agcs never
becomes greater than 0.15 and the weak-coupling approximation
seems to be satisfied.

Figure 3.3 also gives us a knowledge as to which part
of the kernel is important to the formation of the Cooper pair
in the plasmon mechanism. The approximate analytic model,
described in 2-3.B, is shown to work very well, though it is
quite simple. In this model, F(x) is defined with the use of
the changing rate of the kernel near the Fermi surface and
plays the most important role in the determination of Tc'
Therefore the shape of the kernel near the Fermi surface is very
important to this mechanism of superconductivity.

The importance of the kernel in the vicinity of the Fermi
surface is also indicated by the shape of the gap function. An
example of the gap function is given in Fig.3.1 in which
A(x)/A(0) is positive only when |x| = |ep/ef| is less than
ca. 0.2. According to the discussion about the sign of A(x)/A(0)
in 2-3.A, the plasmon-mediated attractive potential has a large
effect on the kernel near the Fermi surface, or more precisely,
the kernel in the region where A(x)/A(0) is positive.

In order to understand the reason why the scatterings
within the region near the Fermi surface are important even in
this plasmon mechanism, let us examine the meaning of the pairing
interaction Vpp' defined by eq. (2.15). When one Cooper pair

’

characterized by momentum p, that is, a pair constructed by an
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electron with p and another one with -p is scattered into another
pair characterized by p', the effective interaction between the
electrons is given by VR(p—p',Q), if the electrons are oscillating
with the frequency 2 during the scattering process. However,
VR(p—p',Q) is not the pairing potential for the pair scattered
from p to p', because the oscillation of the electrons can occur
with any Q@. After we take all these dynamical (Q-dependent)
effects into account, we obtain Vpp', given by eq.(2.15), for
the pairing potential.

In the present case, the plasmon exists only for small
wave numbers, so that the plasmon contributes to the pairing
interaction only when p is nearly equal to p', namely only
when the forward scattering occurs. Thus, when we consider the
Cooper pair at the Fermi surface, only the scatterings in the
region near the Fermi surface have an effect of the plasmon-
mediated attractive interaction. 1In this way, the long-range
nature of this attractive potential limits the scatterings of
the Cooper pairs mainly to the vicinity of the Fermi surface,
even if mp is larger than ¢

£

D. Calculation in the RPA

The excitation mode &p(q) in eq. (3.1) should approach to
q2/2m* for very large g, but &P(q) defined by egs.(3.3) and
(3.4) does not share this property. In order to improve this
point, the static interaction VR(q,O) in eq.(3.3) is evaluated

in the RPA as
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The calculated results of Tc in the present approximation is
plotted in Fig. 3.4 as a function of the carrier concentration
n for the case of g, = 1 by the dotted curve. For the sake

of comparison, the results in the former approximation,
described in 3-2.A, and in the RPA are also shown by the broken
and the solid curves, respectively. The effective interaction,

VR(q,iQ), in the RPA is given‘by[47]

VRg,i0)= Vo / UL+ Q3,1 (3.14)
where the function Qo(q,iﬂ) is defined by
Qo §,i) = VBTG, 0

2
| b -z% 12, (43Ul 3l o
2o L1+ 4% n U-Z)3u U421

(3.15)

Here, Il (g,iR) is the electronic polarization function, z = q/2pf,

us= Q/qvf with the Fermi velocity v and the branch of the

f!
function tan_l z 1is so chosen that 0 < tan Z . & Te InePiga
e, T, and »n are represented in the scales of m*/rc2 and (m*/K)3
respectively. This is because in the electron-gas system, the

physical quantities having the dimensions of energy and length

can be measured in the units of the effective Rydberg and the
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effective Bohr radius, respectively.

Figure 3.4 shows that the change of T with the choice
of the approximations is small, which indicates that for the
calculation of TC in the plasmon mechanism of superconductivity,
the region of large g in the effective interaction is not
important. For low n, the calculated curve of Tc increases
in proportion to v#, which means that 2 is proportional to
wp in this region of n. The maximum value of Tc becomes of
the order of m*/K2 degrees Kelvin at rS v 40, where m* is
measured in the unit of the mass of a free electron which will

be denoted by m, .

3=3. Physical Picture of Plasmon Mechanism of Superconductivity

The analysis of 3-2 suggests that the plasmon has a
rather large contribution to superconductivity. In particular,
the electron-gas system with a low carrier concentration is
expected to be superconducting with the aid of the plasmon.
These results, however, cannot be accepted readily, because the
approximations to the effective interaction employed there may
not work well for the discussion on the superconductivity in
such a low-carrier-concentration system. Thus in order to
proceed further, we must have a more definite physical picture
about the plasmon mechanism of superconductivity. In this
subsection, we first review the bound state of the Cooper pair
in the phonon mechanism of superconductivity in metals for

the sake of comparison and then consider the case of the plasmon
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mechanism of superconductivity.

A. Bound state in phonon mechanism

In the phonon mechanism of superconductivity, the BCS theory
revealed that the effective potential for a Cooper pair which
took every dynamical process into account could be represented

by v_, (r) as

ph

.__\/0 1 Y <:r0/
VS TED
Fh

with a positive VO and the range I, of the order of pf"l. The
wave function ¢ (r) of the Cooper pair in the center-of-mass

coordinate system under the potential (3.16) is obtained by
dw 1pY F—C
by = — 71 e (p,w) (3.17)
2T p /

where Fc(p,u) is the anomalous Green's function defined in 2-1
and the superscript C denotes the causal form. At T = 0, ¢(x)

is calculated to be

s m* e, L@ sinpr
4T7Y o f1/é;2+ 4y

(3.18)
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with A(p) defined by eq.(2.12). Since A(p) does not vanish
only near the Fermi surface and is constant in the phonon

mechanism, eq.(3.18) is estimated for large r as

{(3.19)

it Al
D)= LT64 T %ﬁ%ﬂi— Ky (/20D

where the coherence length EO is given by
3, = 0430Vs /e, (3.20)

with the Fermi velocity v_. and Ko(z) is the zeroth-order modified

f
Bessel function of the second kind. Equation (3.19) can be
understood as the product of the wave function of the free
particle with the wave number Pe and the "envelope function"
Ko(r/ﬁgo). Because of mD/ef « 1, the degrees of freedom for

the relative motion of the pair are two. This fact is reflected

in the "envelope function" Ko(r/ﬂgo) which is the characteristic

for a two-dimensional motion in a square-well potential.

B. Bound state in plasmon mechanism

Now, we consider the plasmon mechanism in the electron-gas
system. In any kind of approximations to the effective inter-
action, the dielectric function e(g,w) has the form for

w » gv. as

£

EQu) = 1- Wp/uw, i 55

while when g is much larger than Pe
14
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L@ =1, (3.22)

for any value of w. Thus the effective potential Vpl(r) for
the Cooper pair which exchanges the plasmon virtually, that is,
which oscillates coherently with the frequency w near wp is

’

assumed to be

e%/\ey Y<Y¥p
()= !
\/fl (3.23)
_gz/‘cry , Y >Ye,
where rp and Kp may be taken tentatively as
~ .24
YP 'Us— /wF ; (3 )
and
2
Xp /e ~ wi’z/é{- , (3.25)

respectively. This potential Vpl(r) corresponds to Vph(r) in

the phonon mechanism, but the difference is clear: The former
has a long-range attraction, while the latter has a short-range
one. Thanks to this long-range nature, the bound state exists
under the potential Vpl(r) for any values of Kp/K and rp' even
if the parameter wp/sf is large to make the degrees of freedom
three. In order to make this point clearer, the motion of the

pair is solved variationally. The Hamiltonian for the relative

motion of the pair is written by

=L (%—, +§—,2a-,+ 3;?) +Vl,4(r) i (3.26)
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The wave function ¢ (r) can be obtained by eq.(3.18) with A(p) given
in 3-2. 1In contrast with the previous case, A(p) changes even

in the vicinity of the Fermi surface, as we have seen in Fig.3.1.
Owing to this fact, Ko(r/ngo) in eq.(3.19) changes into another

form and ¢ (r) may be approximated as

[1+a'p2  sinkr _-via
P = g3 Py € y (3.27)

where the parameter a will be determined variationally by 3<¢ |H|¢>

/3a = 0. 1If the total energy <¢|H|¢> is less than the kinetic
energy of the free particles pg/m*, the electrons near the Fermi
surface are bound together and the superconducting phase will
appear. The parameter a can be solved rather easily and the

approximate solution for a is given by

1
A/ = P exP[(H‘ _:EI’) I(ZFfoO"' ] ] (3.28)
The corresponding binding energy A = |<¢|H|¢>- p%/m*l is given by

K %
X
Afe* = 43 P < exp [—(\—f;(—)]:(zrfrl,)—]], (3.29)
where a*:= K/m*ez, E*= m*e4/2K2, and I(x) is defined by

X
I(X)'—’/o l;t‘wlt* dt (3.30)

which is well-approximated by x2/4 for x £ 3. With the use of

egs.(3.24) and (3.25), egs.(3.28) and (3.29) can be rewritten as
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&3
V3 4'.‘;/(3\; V.S
*
LA =B it S , (3731)
and
0,06  __aS/ht
A/E* “"%?;;;— e Y S/ (3532
v 5

respectively. Since ape is calculated to be

45/93 1
/ (3.33)

QRT‘V 150 €
the important region for the formation of the pair is the long-
range part of the attraction, that is, g «€pg. 1In this region,
the effective interaction in any approximation is much the same
as that in the RPA. Thus the results of Tc in any approximation
are not expected to change very much. This will be assured in
3-4.B by the numerical evaluation of the gap equation.

As is consistent with the result of Tc in Eig. 3.2, the
binding energy A in eq. (3.32) has an optimum re. Since A is
proportional to K/Kp-exp(—pﬁr;), this behavior can be understood
by the changes of rp and Kp with the increase of r,. The region

of the repulsive potential, rppf changes as
%3
VP o~ 2/ Ay N (3.34)

and the strength of the attraction, K/Kp varies as
r

NE
‘:C/»,c,‘_> ~ V7P (3.35)
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When ry is increased, the repulsive region increases. On the
other hand, the plasmon energy becomes so high that the attraction
becomes weak. These two opposite effects make A have an optimum
Ig- It should be noted here that because of the large rppf for
small Lor the approximation used in the derivation of egs. (3.28)
and (3.29) is rather poor. This is probably the main reason why
the bound pair can be formed even in small ros in contrast with
the results in 3-2.

In many-valley semiconductors, Z.e., in the system with
large g, both rppf and K/Kp become small, as indicated in egs.
(3.34) and (3.35). Accordingly, the plasmon mechanism of super-
conductivity in these systems is more favorable for small L s
whereas it becomes unfavorable for large r- This behavior is

illustrated well in Fig.3.3 in which AECS becomes large for large

g9, when 78 is small, while the contrary is the case for large r_-

C. Comment on single-particle states

An additional comment on the single-particle state is
necessary in the plasmon mechanism of superconductivity, although
we have already made some of them in 2-3.D. 1In order to enjoy
the plasmon-mediated attractive interaction between the electrons
of the pair, that is, in order to feel the effective interaction
Vpltr), defined by eqg.(3.23), each electron of the pair should
oscillate coherently, which requires that the wave function of
one electron of the pair should overlap with that of the other
electron in the attractive potential region. Thus the wave

function should extend over a very long range, because the
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attractive potential is a long-range one in the plasmon mechanism.
This condition for the wave function can be changed into that for
the mean-free-path of electrons £. Namely, 2 should be at least
larger than the shortest wavelength of the plasmon which can be
estimated by rp, given in eq. (3.24).

As mentioned in 2-3.D, the macroscopic coherent field is
constructed by the electrons near the Fermi surface irrespective
of the ratio of the energy of the intervening mode (plasmon in the
Present case) to ef. Thus, the electrons near the Fermi surface
should meet the above condition. For these electrons, £ is given
by the product of Ve and the life time of the single-particle
state. The life time T originates from both the impurity scatter-
ings and electron-electron scatterings. With this T, the condition
of ¢ > rP is reduced to that of pr > 1. Physically, if Tt is
shorter than m;l, the coherent oscillation of the pair is inter-
rupted, so that the plasmon-mediated attractive interaction is not
felt sufficiently. When we consider the phase transition from the
normal metallic state to the superconducting one, the condition
of 1 > w;l seems to be satisfied. Detailed discussions are given

in the next subsection.

3-4. Discussions

A. Introduction

We have investigated the possibility of the plasmon mechanism
of superconductivity in the electron-gas system by the application
of the new numerical method to solve the gap equation. One of

the results thus obtained is that for the case of 9,= 1, the plasmon
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alone cannot bring about superconductivity when ry is less than 6.
This fact assures us of the validity of the conventional treat-
ment of superconductivity in metals in which phonons are of the
primary importance and every Coulombic effect including the contri-
bution from the plasmon is dealt with by one adjustable para-

meter u*. We, at the same time, have obtained the result in which
for lower carrier densities than those in metals, the superconduct-
ing state will appear with the aid of the long-range attractive
interaction induced by the plasmon.

In such a low-carrier-density system, however, there remain
several problems before we arrive at the final conclusion. 1In
order to grasp what are the fundamental problems, let us return
to the gap equation (2.6) which does not include any approximations.
According to this equation, we can see that all the problems
originate from two parts. One is the approximation to the single-
particle Green's function Gi(p,iwp) and the other is that to the
irreducible interaction Iii,(p,p';iwp'imp,). In principle, these
two are connected with each other and the approximations to them
should be done self-consistently. 1In this sense, the calculations
in 3-2 are consistent, because the single-particle Green's function
is approximated by the bare one and the vertex corrections are
neglected everywhere. In order to take higher-order corrections
into account, we must have a clear physical idea about the single-
particle state. When the state for T 2 Tc is assured to be normal
and thus a well-defined Fermi sphere is present, Gi(p,iwp) can be

approximated by

l |

(P, 1we) = " T, 2 p2 (3.36)
G‘t P’ P ZC ‘le"Z—m?(P—?j.) /
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where zC and mé are the renormalization factor and the renormalized

effective mass at the Fermi-surface, respectively. Then the self-

c’ mé and

higher-order vertex corrections to Iii,(p,p‘;iwp iup,) should
’

consistent process reads that the calculations of z

be carried out consistently.

In the first part of this subsection, we make several
arguments about the effects of vertex corrections and strong
coupling under the assumption of Gi(p,imp) in the form of eq. (2.7),
or eq.(3.36). Secondly, we discuss the validity of this picture
of the single-particle state. Lastly, we make some comments on the
possibility to observe the plasmon mechanism of superconductivity
in real materials. The valley degeneracy 9, is assumed to be unity

in the following calculations and suffix % is deleted in Iii and Gi'

B. Vertex corrections

The simplest way to include the vertex corrections is the

Hubbard approximationf48] The dielectric function in this approx-

imation EH(q,iQ) is

Elsa) =1+ @p(g,i) / [1- Gu(H@G) 3.3

where Qo(q,iQ) is defined in eq.(3.15) and the Hubbard's local-

field correction GH(q) is given by

Gui) =¥/ 2( ¢+ ?;-% %?’F )= (3.38)

The vertex correction TH(q,iQ) which is consistent with eH(q,iQ)

is obtained as

T, =1/ T1- Gu® Qu(3,i0)) e
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Then the irreducible interaction I(p,p';imp imp,) is given by
r

L (pp's iwp, i0pd = VO(8) [[2(3.12) / E4(3,i02), (3.40)

with g = p - p' and iQ = imp = imp,. It must be noted here that
this interaction is different from that in the self-energy part
of the single-particle Green's function which is given by
VO(q)FH(q,iQ)/sH{q,iQ). An example of the calculated kernels
and the corresponding gap functions in the RPA and the Hubbard
approximation is shown in Fig. 3.5, in which Bt mé/m* = 1 is
assumed. In spite of the large difference in the calculated
kernels at the Fermi surface, the results of Tc are much the same,
Lovigu TC is determined almost by the changing rate of the kernel
near the Fermi surface. Since this changing rate comes mainly freom
the plasmon, vertex corrections have only a small effect on Tc'
The electron-electron ladder diagrams, which are not
included in the Hubbard approximation, should be taken into
account for large Iy to have a correct short-range behavior of

[49]

the pair correction function. These diagrams can be treated

[50]

by the scheme of Singwi et al., in which the local-field

correction Gs(q) is approximately represented by

__B%Z
Gs (= A f="e )/ (3.41)
where A and B are tabulated for r, = l, 2, *++, 6 in the paper
[51]

of Vashishta and Singwi and these results can be simulated

well by the relation of

A=0.T085 + 01363 DuVs+ 0.0975 (bu¥s)®, (3. 42)
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Fig.3.5. An example of calculated kernels and the corresponding
gap functions. Solid and dotted lines correspond to

the results in the RPA and the Hubbard approximation,

respectively.
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and

B=0.3788 — 0,063 m¥s .

(3.43)

The irreducible interaction in this approximation is obtained by
the same form as that in eq. (3.40), in which GH(q) should be
exchanged by GS(q). Some diagrams which are included in this
approximation are shown in Fig. 3.6(a). The BCS coupling

S

constant Agc , which is defined in eq. (3.12), is calculated

under the assumption of 2z, = mé/m* = 1. The result is plotted
in Fig. 3.7, in which the results in the RPA, the plasmon-pole
approximation with the use of the Thomas-Fermi static interaction,

and the Hubbard approximation are also shown. These results are

essentially the same, in particular, for large r,

C. Strong-coupling effect

Now, we discuss the effects of . and mé. When eqg. (3.36)

is used for G(p,imp) instead of eq.(2.7), the kernel K(w,w'),

defined by eq. (2.18), changes into K*(m,w') as

*

* Lo _\__L“LK(QJL;J’)

K™ ww= 22 T Ll o
c

(3.44)

In case of the phonon mechanism in metals, mé/m* is equal to
®
Ze because of wD/ef « 1 and eq. (3.44) is reduced to K (w,w') =

K(m,w')/zc which is the familiar form in the strong-coupling

[13-17]

theory. In the present case, however, mé/m* is less than

; *
zC. In the actual calculation, the values of zC and mé/m are,

tentatively, borrowed from the results of Overhauser,[44] who,
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Fig.3.6. Some diagrams which contribute to the irreducible
interaction I(p,p';imp’iwp,). Diagrams of the type
(ao) are included in the RPA, while those of the type
(al) are in the Hubbard approximation. Types such as
(a,) and (aé) are approximately taken into account by
the scheme of Singwi et 7. Types of (b) and (c) are
the contributions of the paramagnon effect and the
fluctuation effect, respectively. A rough estimate of
the type (b) is considered in 3-4.D. Type (c) is not
important in a three-dimensional system and is neglected
in §3, but in a two-dimensional system, it becomes
important. Discussions of this type of diagrams are

given in 9-2 briefly.
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plasmon-pole approximation with the static screening

in the Thomas-Fermi approximation.

Since the validity

of the extrapolated formulae for A and B, given in egs.

(3.42) and (3.43), respectively, is not known, the

result in the scheme of Singwi et al.

shown in the figure.

for rs> 10 is not
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in the plasmon-pole approximation, tried to simulate the results
of several physical properties obtained by Singwi et aZ.[50’51]
As an example to show the effect of the strong coupling, that is,
the effect of zc and mé/m*, calculation is done for rS = 6, in

which z_ = 2.20 and mé/m* = 1.13, The result with the kernel

C
K(w,w') in the Singwi's approximation is AECS = 0.120 for these
x, % . BCS _ o ok k
values of 2 and mc/m , while Ap = 0.130 for Z. mc/m 1.

This means that the effect of the strong coupling is small.

D. Paramagnon effect

All the preceding discussions on the vertex corrections are

concerned with the class in which I(p,p';iw_ iw_,) is a function

p, p
of p-p' and imp-iwp,. There is an important set of diagrams

which does not belong to this class. It is so called the para-

[52]

magnon effect and this produces a unfavorable effect on the

s-wave coupling of the Cooper pair. In case of a short-range

3

interaction as in “He, this effect is so strong that the spin-

singlet state does not occur.[4l] The diagrams of this effect
are shown in Fig. 3.6(b) and it is very difficult to sum up
these diagrams. We, therefore, make a rough estimate of the

contribution from this set of the diagrams Iparamagnon(p'p.;iw

).

p,¥p

When the interaction VS appeared in these diagrams is approxi-

mated to be g- and w-independent, the diagrams can be summed as

TG 5 9= 5 Ve T, et/ T BV T, i)

(3.45)



where H(q,imq) is the electronic polarization function in the
RPA, given in eq. (3.15). Since the typical value of the static

interaction VS is

|
272 2, [3z461

and H(p+p',iup+iwp,) can be estimated as

LIt . | wf
T ptp's Weriwp) = T (20, 0264) = 27 Zm ’ (3.47)

the wvalue of Iparamagnon(

p,p';imp iwp,)m*pf/2ﬁ2 is estimated to
be 0.07. This is about one tenth of the effective interaction

in the RPA and is negligibly small.

E. Problems about the ground state in the jellium model

Thus far, we have discussed the phase transition from the
normal metallic state to the superconducting one with the aid of
the plasmon, which has ended in the positive conclusion. The
true ground state, however, may be other ordered ones such as

the Wigner-lattice state[45]

in an assembly of electrons in a
uniform background of neutralizing positive charges (jellium
model) , when rS is large. If other states might occur for
r, < 6, the system may not experience the plasmon mechanism of
superconductivity when the carrier concentration is varied.
Therefore, we review other ordered states here.

The Wigner's idea that the electrons in the jellium model

crystallize out at sufficiently low carrier densities is generally
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accepted, although no conclusive calculations have been done to
determine the critical wvalue rz of the r_ parameter at which
the electron gas condenses into the Wigner lattice. Many

[53,54]

: : : W
people have applied various methods to estimate rg-.

Their results spread over a wide range and the largest one

reaches 700,[54]

from which we can say at least that the Wigner-
lattice state will not appear if r, < 10.
In order to compare the condensation energy between the

Wigner-lattice and the superconductivity, the melting temperature

T of the Wigner lattice is estimated to be

{

— W
e e
Tm/E* ~ Foealise: fm— A (3.48)

*
where E 1is the effective Rydberg and T
[55]

0 is typically of the

order of 100. Since the superconducting transition tempera-

ture Tc which is estimated by A in eq. (3.32), is smaller than

W

Tm, the Wigner-lattice state is more stable for T > Iy
Thus, what remains to consider about the Wigner-lattice is

a possibility of the superconductivity in the Wigner-lattice

state, since the plasmon is also present in this state. However,

the wave function of each electron is localized in this state

and the superconductivity does not occur, as we have discussed

in 3-3.C. This leads to the complete absence of the super-

conductivity for L3 rg. This problem can also be seen from

another point of view. As rg is increased, the single-particle

state wp characterized by the momentum p has a shorter life time

Tp due to the electron-electron scatterings. Accordingly, the



O i

Fermi surface becomes blurred and it is not well-defined at all

Eor T rg so that ey becomes of the order of w_l. When

. =
the life time of the quasi—particle is so short, the plasmon
mechanism of superconductivity does not occur, as discussed in
3-3.c.

In connection with the superconductivity in a Wigner-
lattice state, we make a few comments on the speculation by

Bagchi,lss]

who suggested that since the static dielectric
function for small g was negative in the Wigner-lattice state,
other conduction electrons, introduced into the lattice, would
form the Cooper pair. First, he considered two kinds of elec-
trons, while we discuss a single kind of electrons. His
situation is just the same as that of electrons in the lattice

of ions and there is nothing new. Secondly, when another kind

of electrons is introduced into the Wigner-lattice state, the
system will be changed in order not to make the static dielectric
constant negative.

As for a candidate for the ordered state in the jellium
model for large rg, a ferromagnetic state is also investigated,
which is related to the paramagnon effect. Several authors[57’58]
studied this problem and found that this state would not appear

(57] [58]

if r_ was smaller than 10, or 19.

To sum up, there is no conclusive knowledge about the

ground state in the jellium model with large T but if we take

an optimistic point of view, it seems safe to assume that for

6 < . S 10, the system is in the normal metallic state with

a well-defined Fermi surface for T > TC and that it becomes

superconducting with the aid of the plasmon for T < T_.
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F. Effects of disorder

We have to recognize several discrepancies between the
jellium model and real materials. BAabove all, there are various
kinds of disorder in real systems. If the fluctuation of the
potential coming from ions is very large, each electron will
localize at the potential minima, as pointed out by Anderson.[sgl
This causes a fatal influence on the plasmon mechanism of super-
conductivity.

Even when the effects of disorder are not so strong that
they can be treated in terms of the impurity scattering by
electrons, the superconductivity in the plasmon mechanism might
be damaged. In case of the phonon mechanism, the pair will
oscillate coherently even for the very short relaxation time T
of the impurity scatterings, for example, T " e;l, because the
range of the attraction is short and there are no impurities
practically in that small region.

In the plasmon mechanism, however, the range of the plasmon-

mediated attraction is long and there will be not a few impurities

within the range. In the presence of impurities, the dielectric

function for small g has the following form[60] instead of egq.
(3.21):
wp
w) =1 - -
2(.%; W+ ift) . (3.49)

Equation (3.49) requires the condition of

W, T K1 (3.50)



in order to make the same discussions as those in 3-3.B.
Therefore, the plasmon mechanism is affected more strongly by
impurities than the phonon one in which non-magnetic impurities

hardly affect the superconductivity.[sl]

G. Final conclusions and discussions

Now, we sum up the foregoing discussions on the plasmon
mechanism of superconductivity in the electron-gas system.

In the first place, the plasmon has an effect to make the system
superconducting. The effect increases with the decrease of the
carrier concentration, but it is not so strong as to overcome
the effect of the short-range Coulomb repulsion in usual metals
(rs < 5). When the carrier concentration is decreased further,
the plasmon brings about superconductivity, provided that the
system is in the normal metallic state with a well-defined
Fermi surface for T > Tc. In this case, the calculation of TC
can be made rather accurately in the RPA, because the important
interaction for the plasmon mechanism comes from the region of
small g and w " wp. In such a region, every vertex correction
is small and the interaction is weak enough to make the strong-
coupling effect small.

Since it is rather a strong restriction for the system
with Lg% 6 that it should be in the normal metallic state for
R Tc, it is a very subtle problem whether we can observe the
plasmon mechanism of superconductivity in real materials.
However, we come to know both favorable and unfavorable factors

for the presence of the plasmon mechanism of superconductivity,
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which provides us a hint to find out the system having the
property that the contribution of the plasmon to the super-
conductivity is reinforced, or that the disadvantageous factors
are suppressed.

The first system that we can point out to satisfy this
regquirement is a polar semiconductor in which the static
dielectric constant = is large, while the optic one g is small.

Because of the large ¢ the Wigner crystallization and the

0,
Anderson localization are difficult to occur and the life time
due to both the impurities scatterings and the electron-electron
scatterings is long owing to T =« l/sg. On the other hand, the
contribution of the plasmon to the superconductivity does not
change, if the energy of the optic mode wo is of the order of

mp. This is because the plasmon-mediated attraction comes from
the dynamical effect and the dielectric constant for this process
is not EO but €, Discussions on this material are done in
chapter II.

The suppression of the electron-localization can be also
done by the introduction of other kind of carriers, since the
static dielectric constant becomes large. From this reason,
superconductivity in multi-carrier systems is treated in chapter
ITI. It is also the purpose of this chapter that we deal with
a two-dimensional (2D) system in which the dispersion relation
of the plasmon for small g is proportional to /g. According to
the discussions in 3-3.B, one of the reasons why the binding

energy of the pair is rather small is that wp/ef becomes too

large for low-carrier-density systems. In 2D systems, however,



wp is always small for small g and the contribution of the
plasmon is expected to be large. 1In this way, 2D systems deserve
a special attention.

Lastly, we make a comment on the observation of the plasmon
mechanism. Even when a material with a low carrier concentration
shows a superconducting behavior, there always exist phonons in
real systems. Therefore, we cannot ascribe the superconductivity
to the plasmon immediately and we must know the interrelation
between the plasmon and other modes such as phonong in the super-
conductivity. This is also one of the main problems in the following

chapters.
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CHAPTER 11

SUPERCONDUCTIVITY IN SEMICONDUCTING SrTiO3

Chapter II treats the superconductivity observed in an

n-type semiconducting SrTiO3. We make a general survey of this

system in §4. Since this material is a polar crystal, a general

theory of superconductivity in polar semiconductors is presented

in §5. 1In 86, we apply this theory to this material to determine

the mechanism of superconductivity in this system.



§4, General Survey

4-1. Introduction
Superconductivity in semiconductors has been treated in much

the same way as that in metals. [29-31.62]

The contribution of

the plasmon has not been considered to be large and all the effects
of the Coulomb interaction have been estimated by one parameter

u*., However, the analysis in the previous chapter shows that

the plasmon plays rather an important role in superconductivity

in low-carrier-concentration systems such as degenerate semi-
conductors. Thus, we have to reexamine the superconductivity

in these materials by taking the effect of the plasmon into

account more precisely.

As the first example of such a study, we deal with polar
semiconductors in the present chapter in which the longitudinal
optical (LO) phonons couple strongly to electrons through the
electric field of the polarization wave. Gurevich et aZ.[621
examined this problem and obtained the conclusion that the
superconductivity could occur only if the Fermi energy e_ was

£

much higher than the energy of the LO phonon w This result

e
is reexamined and the correct condition for the presence of
superconductivity in polar semiconductors is investigated in §5.

We apply the general discussion on the superconductivity
in polar semiconductors to semiconducting SrTiOa. This material
is observed to show a superconducting behavior in very low

carrier concentrations. The details of this material are summarized

in the following subsections. The calculated results of TC are
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compared with the experimental ones in §6, from which the mechanism

of superconductivity and the role of the plasmon are clarified.

4-2, SrT:LO3

A. Pure crystal

SrTiO3 is a representative material of perovskite-type
compounds and has many interesting properties. When the crystal

of SrTiO3 is pure, it is an insulator having an energy gap around

[63]

3.3 eV. The phonon, characterized by FZS’ condenses at the

R-point at the temperature of eg.105 K and a cubic-to-tetragonal

[64]

structural phase transition takes place. Although a ferro-

electric transition does not occur, the static dielectric constant

EO increases with the decrease of the temperature, as high as

4 [65,66]

MO R, ey S B3 ) This is related to a low-lying transverse

[67]

optic (TO) mode at the I'-point. This ferroelectric (FE)

soft mode has been observed by various methods.[sg_Tl] Stress

effects on this phonon are also investigated. Hydrostatic

[72,731

pressures harden the FE soft mode, while uniaxial stresses

soften it to bring about a ferroelectric state.[74'75]

B. Properties in the normal state

When SrTiO3 is doped with Nb or La, or reduced in vacuum
or low-pressure hydrogen atmosphere, it becomes an n-type semi-
conductor, in which the electron concentration »n can be varied

18 -3 lOZlcm—B_[76,77]

very widely from 10~ “cm to The band structure

of this material was calculated by several people.[78"80] All
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these works show that the conduction bands are composed of the

titanium t2g bands, but can be classified into two, according

to positions of the energy minimum in the conduction band. One

is a many-valley model whose minima are at the X-points, which

(78]

was first proposed by Kahn and Leyendecker . The other is a

warped band model at the T'-point which Mattheiss obtained by

9]

the APW calculations.[7 In order to determine which model

is correct, various experiments have been done on the transport

[77,81-84]

properties. At first, the former model was supported,

in particular, by the measurement of the magnetoresistance.[77’811

Piezoresistive properties, however, indicated that the minimum

3]

of the conduction band was at the I‘-—]L:Joim:.[8 Moreover, the

recent experiment on the magnetoresistance supported the theoretica

results of Mattheiss strongly.[84]

C. Superconductivity

Seﬁiconducting SrTiO3 exhibits superconducting behaviors,
when n is in the range from 8._‘3><10]'8cm_3 to 3.0X1020cmﬂ3.[30'32]
The curve of TC as a function of n has a peculiar feature:

Tc first increases, reaches its maximum of 0.3 K at n = 1020cm—3
and then decreases with the increase of n, as shown in Fig.4.1.
Stresses also produce very interesting and unusual effects on Tc.

Pfeiffer e+ al.[ss]

discovered that TC decreases with the increase
of the hydrostatic pressure by an amount approximately two to
five times greater than the corresponding effect in usual metallic

superconductors, while TC is sometimes increased by the application

of the uniaxial stress along the [100] direction. These behaviors
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Fig.4.1. Observed Tc in the n-type semiconducting SrTiO. as a

3
function of the carrier concentration n. Plain solid

circles represent the experimental data, while the open

circles show the calculated results obtained by Koonce

et al.
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Fig.4.2. Stress effects on the superconducting transition temper-

ature ATC measured in SrTiO, under the hydrostatic

3
pressure, the uniaxial stresses along [100], [110],
and [111] directions, which are indicated by H.P.,

[100], [110], and [111], respectively. The carrier

concentration is 2.5><1019(:m_3 for (a) and (b), while

it Sy 6.3X1019cm—3 for (c). Sample (a) is prepared
by the doping of Nb, while those of (b) and (c) are
the self-reduction. In the materials with nearly
cubic symmetry as in the present case, there is no
qualitative difference between the data of H.P. and

those of [111], so that in the later calculations,

we do not consider the case of [111].
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are illustrated in Fig.4.2.

There have been several studies on. the explanation of the

[30.86-88]

superconductivity. The most comprehensive investigation

[30]

was done by Koonce and Cohen with the use of Cohen's theory

of superconductivity in degenerate semiconductors[?gl They adopted

[78]

the many-valley model of Kahn and Leyendecker and emphasized

the importance of the inter-valley phonon scatterings. Appel[SG]
laid stress on the soft optic phonon connected with the 105 K

[87]

structural phase transition, while Zinamon assumed that the
intra-valley acoustic phonon was responsible for the superconduc-
tivity. Each of these works accounted for the observed dependence
of TC on n with the use of the deformation potential as an adjustable
parameter, but each mechanism is not convincing by the following
three reasons. First, the many-valley model does not seem to be
correct, which eliminates the mechanism of Koonce and Cohen.[30]
Secondly, all the authors except Koonce and Cohen did not solve
the gap equation correctly and used the idea of the Coulomb
pseudo-potential p*, which does not seem appropriate in the present
system. Besides, we cannot accept the calculation of Koonce and
Cohen readily, because according to the discussion in 2-1.C,
Cohen's theory does not seem to work well in the present system
in which the mode to bring about superconductivity has the energy
of the order of Epe The last reason is that it is not clear
whether any of these mechanisms can explain the unusual pressure
effects on Tc.

In the present chapter, the model for the conduction band

[791]

calculated by Mattheiss is assumed, so that the valley
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degeneracy 9, is taken to be unity. The mechanism to cause the
superconductivity is considered to be the combination of the
plasmon and the FE soft phonon which enters into the theory
through the dynamical dielectric constant of the electron-

phonon system for a polar semiconductor. The experimental

curve of Tc as a function of n and the stress is reproduced quite

well without any adjustable parameters. The details are described

in §6.
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§5. General Theory of Superconductivity in Polar Semiconductors

In this section, we make a general study of the super-
conductivity in polar semiconductors. The curve of Tc as a

function of n is calculated in 5-2 for several values of ¢ €

0’ Eor
and wy in order to investigate the interplay of the LO phonon

and the plasmon in the superconductivity, where € and € are

the static and the optic dielectric constant, respectively, and

wy is the energy of the LO phopon. In 5-3, we discuss the physics

of the interplay and show that the parameter wz/wp°° plays an important

role in the interplay, where the plasmon energy wpco is defined

with respect to €_ as
(-]

w?” = '\14‘\'92"‘/€aom*/ (5.1)

with the effective mass m¥*.

5-1. Effective Interaction
We consider an n-type isotropic polar semiconductor with
g9,= 1. 1In this system, besides the bare Coulomb interaction Vm(q)

’

given by
V“(%)= lﬂ\'ez/ém%"l (5.2)

the interaction coming from the virtual exchange of the optic

phonon W, (q,w), expressed by
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(2

Wy

ST 53
W —UJ;+L0+ ( )

&0
Wplg.m) =V 15) (1~ €uleg)
contributes to the electron-electron interaction. The parameters

€ e, and w, are supposed to be independent of g in this section.

0
As we have studied in §3, the RPA works rather well in the

calculation of TC in the plasmon mechanism of superconductivity

even in low-carrier-concentration systems. This will also be the

case with the present system, since the important contribution

of the optic phonon-mediated interaction comes from the region

of small g. Thus, we employ the RPA and the retarded effective

electron-electron interaction VR(q,w) is calculated to be

VEg,00= TV76) +W, (5,007, /14| Vi ip+Wo(t.9)}]

= 4Te*/ 22 ¢ (3, w)

(5.4)

where the dielectric function in the electron-optic phonon system

e(q,w) is given by

W

gy QG eg a0 m+ )

with the electronic part Qe{q,w), defined by

Qe (fw) = ‘me’l/%z -Tl-(‘l.w)j (5.6)

and the energy of the TO phonon W, which relates to w, through

2
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the Lyddane-Sachs-Teller relationlsg] as
Gl Eoo wz
Wssine = Wy (5.7)
0

When the single-particle energy ep is assumed to be

YZ

am*X

e =€ (5.8)
Cp 3
as in chapter I, the electronic polarization function Il (q,w)

is given in eq. (3.15).

5-2. Calculated Results of TC

When the effective interaction VR(q,iQ), given by eq. (5.4),
is substituted into eq. (2.18), TC can be obtained readily with
the use of the new numerical method described in 2-2. Figure 5.1
shows the calculated Tc as a function of »n for several values of
W s in which T, and w, are measured in the unit of the effective
Rydberg m*/ei and n is in the unit of (m*/Em)B, as in the case
of the plasmon mechanism. The electron-optic phonon coupling
constant is characterized by the parameter l—sw/eo which is taken
to be 2/3 in Fig.5.1. Fermi energies normalized by the effective
Rydberg e./(m*/e2) are 42.3 K, 196 K, and 911 K for n/ (m*/e_)3

18cm~3, lOlgcm_B, and lOzocm_3, respectively, where m¥ is

= 10
measured in the unit of the mass of a free electron mg - Every
curve of Tc behaves much the same way as that in the plasmon

mechanism. When n is very low to have € much lower than wo .
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Fig.5.1l. Calculated Tc scaled by the effective Rydberg m*/e:

as a function of n scaled by the inverse of the effective
Bohr radius cubed (m*/em)3 for several values of the

LO phonon energy wy in polar semiconductors. The

upper broken curve indicated by et Qe(q,w) shows the
result in which every effect of the LO phonon is neglected
and therefore, only the plasmon with the optic dielectric
constant € contributes to the superconductivity. The
lower broken one is the result given in the plasmon

mechanism with the static dielectric constant ¢ In

O.
this case, the dynamical effect of the LO phonon is

neglected.



Tc approaches to that indicated by the lower broken curve which
is obtained in the plasmon mechanism with the static dielectric
constant EO, that is, which is calculated with the use of the
dielectric function of

€ Q= ty+ Bg Fw), —
This suggests that the polar phonon has only a small effect in
this region of n. As n is increased to make ¢ the order of
Wy s Tc becomes larger than that in the plasmon mechanism with
the optic dielectric constant € 1 shown by the upper broken
curve. With the further increase of #n, TC reaches its maximum
of the order of 3X(m*/ei) K, and then decreases. The super-

conductivity continues to arise even when the e value, defined by

‘/3

Yéw =

(5 10)

S

A LT N /

becomes less than 1.0. This should be compared with the case
in the plasmon mechanism in which superconductivity does not
appear for T 6.0. The optic phonon makes the system super-
conducting even in very high carrier concentrations.

The effect of the electron-polar phonon coupling constant
1—&:&/8O on TC is shown in Fig.5.2, in which wg/(m*/ei) is taken
to be 200 K. 1In the region of low n where the plasmon mechanism
dominates, Tc is of the order of m*/eg and a system with low ¢

0

has a higher T than one with high ¢ On the other hand, for

0°
higher n, a system with high £ is more favorable for the super-

conductivity, since it has all the larger electron-phonon coupling
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Fig.5.2. Dependence of Tc on the electron-LO phonon coupling
constant characterized by l~am/eo in polar semiconductors.
The uppermost dotted curve corresponds to the result in
which every effect of the LO phonon is neglected and
only the plasmon with € _ has a contribution to the super-
conductivity.

Other dotted curves show the results in

the plasmon mechanism with €0°
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constant.

5-3. Physics of Superconductivity in Polar Semiconductors

A. Modes in electron-polar LO phonon systems

In order to clarify the physics of the superconductivity
in this system, we first investigate the modes of the system
which can be obtained by the zeros of e(q,w). For small g, there
are two modes, plasmon-like one and phonon-like one, approximately

given by

2 2 2 2 2 32
wi=__\£{ml+wf,mt/{(wﬂ +wrm)-hw;,°w§ } (5.41)

In case of high p, namely, wpm>> w w, and w_ are reduced to

L T+

and (5.12)

respectively. On the other hand, in the system with low 7 to

produce mpm<< W they become to be

Dd+t f\/wf+ (\“‘"Em/io) w;ao = wﬂ_)
and {(5..:13)

e

respectively, where mpo is defined by
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’_ia; = |4uhe?
Wo= Vg Wre ‘\} Eom* . (5.14)

B. Kernel in the gap equation

Now, we apply the approximate method, given in 2-3.B, to

the present system. Assuming that
z 2
Qe (96,0) = & ¥ /%' y (5.15)

with

e = /,/4ez'm*{’§/-“ £ (5.16)

as in the case of 3-2.A, we obtain the approximate form of the

kernel (2.18) for small x = w/e and x' = w'/ef as

%\’Jf %TF 4 § Zw

K(Xx') = %TFJM Qre 4ty N | §¢ & (_fL_ifi+_5_‘L%:

X Cha+x'y ) T;L_j{c—\ (5.17)

where Pe is the Fermi wave number, f, are given by
2 2
* we — w2 (5.18)

and

ol (W -w?)
§-= WE — W2 (5.19)
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respectively. The values f are examples of fv(q) appeared in

ed. (2.58).

For the case of wpw>> Wyr eq. (5.17) is reduced to

_BT_F_ W+l\-ﬂ- J-%r; Eo + (-5
L(U“X.) %‘pz jﬂ %TF g [1 (.ib) )——j;.QO)

(\x\+\x'\>1m v x. :

while for wpw<< W K(x,x') has the form of

%'LF %lF*{‘- i' \J %‘F Eo r :' ‘m
/ \\ - \_

K O —ﬁ~

x~2"\

(5.21)

C. Physical interpretation

If we compare the above kernel with that in the plasmon
mechanism, given by eq. (3.6), we can immediately notice that the
essential mechanism to bring about the bound pair is the same.
The only effect of the optic phonon is to increase the contribu-
tion of the plasmon to the superconductivity. As a result, the
overall behavior of the curve of Tc as a function of n in this
mechanism is the same as that in the plasmon one, as we have
already seen in Figs.5.1 and 5.2. For low n, the kernel, given
by eq.(5.21), approaches to that in the plasmon mechanism with
€y whereas eq. (5.20) indicates that for large eo/ew, the system
becomes superconducting even when n is very large.

The maximum Tc appears when wpm is of the order of W, i.€.

w, = w_. Physically, when the frequencies w, are different very
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much, the Cooper pair oscillates coherently with one of these
frequencies which produces a larger attraction. As a result,

the other mode is not excited by the pair and cannot contribute
to the formation of the pair. 1In order to enjoy the full contri-
bution from both of the modes, the frequencies of these modes are
required to be almost the same. This argument suggests that even
when several modes are present in the system, they cannot be

treated by the addition of the contribution of each mode.

D. Comparison with the result of Gurevich, Larkin and Firsov
1o 2]

Gurevich et a discussed this problem and obtained

the condition for the appearance of superconductivity in this

system as

e s >
%0 ol m €4/ g (5.22)

with
PA E
Sl
O 6 €= Re lM et (5.23)

According to the inequality (5.22), superconductivity arises only

when

20 >'> E,oo J

(524

and

E55> Wy . (5.25)
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Since SrTiO3 does not satisfy the condition (5.25), all the

[30,86-88]

workers who treated this problem before did not think

that the optic phonon in SrTiO, was very important in the super-

3
conductivity.

The result of Gurevich et ql. is totally different from
that in 5-2. This difference comes mainly from the negleét of
the contribution of the plasmon. Experimental facts are necessary
to determine which theory is correct. As we will see in the next
section, the theory proposed here, that is, the plasmon-polar

phonon mechanism of superconductivity, seems to be supported

by the experiment of the superconductivity in SrTiOB.



- 96 -

§6. Application to Semiconducting SrTiO3

In this section, we apply the general theory in §5 to SrTiO3
and disclose the mechanism of the superconductivity in this
materia}. In 6-1, the model of the system is described. The
calculated results of Tc in the plasmon-polar phonon mechanism

are shown in 6-2 and compared with the experiment.[30'32]

The
stress effects on Tc are evaluated to account for the experiment[85]
in 6-3. Contributions of other modes are examined numerically

in 6-4. Summary and discussions are given in 6-5.

6~-1. Model of the System

Below 105 K, SrTio3 has a tetragonal structure with c/a =
1.0006[90] and anisotropic behaviors are observed in various
physical properties. For example, the dispersion relation of
the ferroelectric (FE) soft mode mt(q) is anisotropic and depends

[68,71,75]

strongly on q. The Fermi surface is also highly

anisotropic according to the warped-band model of Mattheisss79]
which is observed experimentally.[84]

In the actual calculations, however, the anisotropy is not
considered for the sake of simplicity. The single-particle
energy ep is assumed to be parabolic, as shown in eq. (5.8). The
effective mass m* is taken to be the density-of-states mass mﬁ.
The results of mﬁ calculated by Mattheiss showed a nonparabolic
effect, but its effect was small. With the tenfold increase of =,
* was of the

D
order of 1.7 m,. The recent experiments of the electron tunneling[82]

mB was increased by about 10 %. On the average, m



[84]

and the magnetoresistance supported this value of m*. The

D
static dielectric constant 0 and mt(q) are determined by
V£
Elna—nt
0 ( "‘E%Ei) ; (6.1)

and

Welp) = (19 Wy(HD Cdz(.%))ya, (6.2)

respectively, where £y and mu(q) are the static dielectric cons-
tant and the dispersion relation of the FE soft mode along the
o-axis (a = x,y, or a), respecfively. The z—-axis is taken along
the c-axis. With the use of these values of wt(q) and €., the

0
dielectric function of the system is given by

W (§)
wtzl%)._wz_t()'*' i (6.3)

€(§u)= €xnt de@w) +L 68— €x)
where Eo(q) is related to wt(q) for small g as

Eo ()= &o WO /WE® (6.4)

which can be obtained by the extension of the Lyddane-Sachs-Teller

relation to the case of small q.[86'87'89]

There are optic modes
other than the FE soft mode in this material, but they are neglected
in eq. (6.3), since the mode strengths for these modes are less

#han 1072 of that for the FE: soft mode; 921
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6-2. Calculated Results in Plasmon-FE Phonon Mechanism

5,71,75
When the experimental values of e_= 5.2,[91] €0= 23000[6 ¢ 71,75]

and wt(q), given by[65'66’7l]

W)= 634 + \40x10TPF (em) (6.5)

are substituted into eq. (6.3), Tc can be readily obtained by the
numerical method in 2-2. The dispersion relation (6.5) of wt(q)
is just the same as employed by Appel.lss] Since the observed
mﬁ varies in a very wide range from 1.1 m, to 14 me,[77’81’82’84]
Tc is calculated for several values of m* and the results are
shown in Fig.6.1. The experimental points in the figure are
quoted from Koonce et aZ.[30] (Fig.4.1) and these points can be
reproduced quite well with the use of m* in the range from 1.5 m,

to 2.0 m, s which is in good agreement with the "adjusted" result

of Mattheiss.[79]

The behavior of T, is similar to that obtained in 5-2, but
the change of Tc with n is steeper in this case. This reflects
the fact that in contrast with the case of §5, eo(q) decreases
‘with g and therefore the averaged static dielectric constant EO'
estimated by Eoz €y (Pg), decreases with the increase of n. It
should be noted here that if the contribution from the plasmon
is not considered, superconductivity does not appear in this
region of n, that is, in the region of 6 < rsw< 20, where oo
is defined by eq. (5.10) with m* = 1.8 m,,.

In order to obtain a better knowledge of the effect of the

PE soft mode on the superconductivity, the change of Tc with wt(O)
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Fig.6.1l. Calculated results of Tc as a function of the carrier

density n for several values of m* in the plasmon-FE

phonon mechanism.
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Fig.6.2. Effect of the softening of the FE phonon on Tc. Experi-

mental points are borrowed from those in Fig.4.1.
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is investigated in Fig.6.2, in which m* = 1.8 m s €, 5.2, wt(q)

is so chosen that

WEQ) = Wlo) + (40x07%¢  CamY)

(6.6)
and €0 is determined by
2
Co= 23000 - (Wyg (0D / we(0)) y (6.7)
with wtO(O) = 6.34 cm-l. The crystal becomes more polarizable

with the decrease of wt(O), which is taken into account by
eq.(6.7). As wt(O) is decreased, Tc increases because of the

increase of the electron-phonon coupling constant l—ew/eo(q).

1

However, if wt(O) is less than 15 cm —, the change of T, is small

and the electron concetration to give the maximum TC hardly changes
with wt(O). Thus, even if we employ the other observed value of
w, (0) instead of w, (0) = 6.34 em L, for example, w,(0) = 15.3 cm L
measured by Yamada and Shirane}7l] or mt(O) = 12.2 cm_1 observed
by Uwe and Sakudo!75] the conclusion that the superconductivity

in semiconducting SrTiO3 can be accounted for by the plasmon-

FE phonon mechanism of superconductivity is unchanged.

The FE soft mode has a rather large width Y,[71'75]

so that
the effect of y on Tc is studied by changing wg(q)/(mg(q)—wz-io+)
in eq. (6.3) into wg(q)/(wg(q)-w2 ~iwy). The calculated T, is
plotted in Fig.6.3 for the cases of n = lolgcm_3 and n = 1020cm-3
with m* = 1.8 m, and wt(q) defined by eq.(6.5). Within the

observed range of vy, Tc is not affected. This can be understood
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from the physics that the binding energy of the Cooper pair is
unchanged, provided that the damping time of the mode is longer
than the time during which the pair exchanges the mode virtually

by the coherent oscillation,

6-3. Stress Effect
The effect of the stress on the superconductivity is investi-

gated to make the importance of the FE soft mode clearer. As

[85]

mentioned in 4-2.C, Pfeiffer and Schooley observed a very

curious behavior of Tc under uniaxial stresses and hydrostatic
pressures. Since the volume of the crystal hardly changes with
the stress of the order of 1 kb and neither does the electronic
structure in the warped-band model of Mattheiss!79] the change
of the transition temperature ATC cannot be explained by that of
m*, or n. Thus, what remains to be considered is mt(q), or
equivalently, so(q).

The change of wt(O) and 80(0) with the stress was observed

[72-75]

by several workers and mt(O) softens to zero to bring

about a ferroelectric state in case of the [100] and the [110]

[ [75]

uniaxial stresses.74’75] According to Uwe and Sakudo, wy(O)

vanishes at the stress of 1.6 kb in the [100] stress, while

w, (0) vanishes at the stress of 5.6 kb in the [110] stress. The
change of mt(O) = (oum(o)'uJy(O)qu(()))l/3 with the uniaxial stress
is plotted in the bottom of Fig.6.4. The change of wt(O) with
the hydrostatic pressure, denoted by H.P., is also shown, which

is inferred from EO(O) measured by Lowndess and Rastogi.[73]
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Since there are no experimental results to estimate the
change of the dispersion relation at present, we employ the
same dispersion relation as in eq.(6.6). Under this assumption,
only mt(O) is changed by the stresses. The change of wt(O)
produces that of Tc’ as shown in Fig.6.2 and the curve of ATC
as a function of the stress is depicted in Fig.6.4 for the two

19 Ben™3. The parameters

cases of n = 2.5x10%cm™3 and n = 6.3x10
such as m* and € are the same as those in Fig.6.2. For the
[100]) stress greater than 1.6 kb, ATc is calculated under the
assumption that the electronic structure in the ferroelectric
state does not alter very much from that in the paraelectric state.
The experimental points in Fig.6.4 are quoted from the work of
Pfeiffer and Schooleylgs](Fig.4.2) without any distinction between
the data for the Nb~doped samples and those for the reduced ones.
The difference in the behavior of ATc with the [100] stress,
the [110] stress énd the hydrostatic pressure is explained quite
well. In particular, the anomalous behavior of ATC observed
under the [100] stress near 1.6kb is clarified to come from the

ferroelectric transition. This seems to be a great support for

the validity of the present theory.

6-4. Consideration of Other Mechanisms

Among various mechanisms suggested to account for the super-

conductivity in this matérialf3o'86-88] the model of Appel[BG]

and that of Zinamon[87] are consistent with the warped-band model

with 9,= 1, although their treatments of the gap equation, in
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particular, of the Coulomb interaction were incomplete. Thus we

consider these models by solving the gap equation with the use

of the new method of 2-2. At the end of this subsection, we also

make a comment on the work of Koonce and Cohen.[30]
Appellss] suggested the importance of the soft phonon (Alg

mode) associated with the 105 K structural phase transition.

In order to include this mode in the present mechanism, the

effective interaction defined by eq. (5.4) is modified to be
VR = [ V™ @) +W (g0) +ws (3o ]
/DTG TP G +Ws@od] o

where Wg(q,m) is defined by eq. (5.3) with

&olh) 2 =
W=l ==l (6.9)

o

€ = 5.2, and so(q) given by egs. (6.4) and (6.5). The interaction
originated from the virtual exchange of the structural soft
phonon Ws(q,w) is obtained by

2 o)

=5 K Zwsﬁg)
_—

() = S 0
WS %k 2?5“’5&) (A)—UJS(O*IO* /

(6.10)

with the deformation potential ES, the reciprocal lattice vector
of the R-point K, the density of the crystal Py and the energy

£ :
of the Alg phonon ws(q) given by

~\%

Wegy= 46.0 + 3671079 (ew)) (6.11)



- 107 -

as was supposed by Appel. Taking |K| = /3m/a with the lattice
constant a = 3.9 A, p= 52 g/cm3 and m*= 1.8 m,, we can calculate
Tc and the results for several values of Es are plotted in Fig.6.5.
The behavior of all the curves is similar, but the value of TC

for ES= 1.0 eV becomes about three times as large as that for

E = 0 eV and the contribution of the A phonon cannot be neglected.

s lg
However, ES is of the order of 0.04 eV, as evaluated by Allen[gz]

with the use of the energy-band calculation of Mattheiss,[79]
from which we cannot adopt this mechanism.
Next, we study the contribution of the acoustic phonons,

[87] The effective interaction

which was emphasized by Zinamon.
in this mechanism is obtained by the replacement of W_(q,w) in
eq. (6.8) by Wa(q,w), defined by

2 2

% (L0 Vinio-w) m)z 2C,.%

=3 o
2?5(’&0& W£L‘w2 w-‘,___ca?-'%_t_to‘f y (6.12)

W, (W) =

whefe the acoustic mode has the dispersion relation of c_d with
the sound velocity C s and Ea is the deformation potential.
Calculated T, for several values of Ea is shown in Fig.6.6, in
which m* = 1.8 m and & = 7XI05cm/sec are taken. When ES is
chosen in the reasonable range, the effect of the acoustic
phonon is not important.

Koonce and Cohen[30]

applied Cohen's theory on the super-
conductivity in multi-valley semiconductors to this material
and their treatment of the gap equation was much better than
those of Appel and Zinamon. But they could not find out that

the superconductivity in Sr'I‘iO3 was due to the combination of
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the plasmon and the FE phonon. They adopted the multi-valley

[78]

structure

and argued that the observed TC could be explained

by the inter-valley phonon scatterings, when the deformation

potential for this process was taken to be 15 eV.

The difference between Koonce and Cohen

theory stems from that of
different from our kernel
errors when the energy of

SrTiO3, the energy of the

600 K, while e€_. is around

£

Therefore, Cohen's method

6—-5. Discussions

[30] and the present

the kernels. Cohen's kernel is

and is pointed out in 2-1.C to produce
the mode is of the order of €ec- In
longitudinal FE phonon w, is about

900 K for n = 4x10%cn™> and m* = 1.8 m_.

cannot be applied to this material.

A large number of experimental studies have been performed

on pure and doped SrTiO3 samples to determine various physical

quantities. On the basis

of the knowledge thus obtained, we

have calculated T of this material from the first principles.

The experimental results of TC can be reproduced quite well, when

we take the plasmon and the FE polar phonon into account. This

suggests strongly that the mechanism of superconductivity in

semiconducting SrTiO3 is the plasmon-FE polar phonon one.

According to the discussions in chapter I, the plasmon

plays an important role in superconductivity, when a system with

a low carrier concentration is in the normal metallic state for

> e This condition is just satisfied in semiconducting SrTiO

as shown in the following.

3
For the dynamical process with the
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frequency of the order of mp' the relevant dielectric constant

is €_, because wp is larger than w defined by eq. (6.9), in

R,‘
SrTiO3 for n' > 1019 cmdB. Thus the rg parameter should be defined
with respect to e and the value of Taar defined by eq. (5.10)

20cm"3. In this

with m* = 1.8 n, is larger than 6 for n < 4x10
way, the condition of the low carrier density is fulfilled. 1In
order to investigate the electronic state in such a low-carrier-
concentration system, Hall constant and electric mobility were
measured at low temperatures. Even in a very low n, that is,

n = 7X1018cm_3, these quantities were observed to be constant

for: T < *0 K.[30]

At the same time, the system was found to be
rather clean, because the mobility was of the order of 103cm2/Vsec
and consequently, the impurity-scattering width was less than
several degrees Kelvin. Accordingly, it is experimentally proved
that the system is in the normal metallic state for T > Tc'
Theoretically, however, it is rather difficult to understand

the reason why the normal metallic state is present in such a
low-carrier—-concentration system. A possible explanation of

this fact is that for the problem of the Anderson 1ocalization£59}

[45]

or the Wigner crystallization, the static interaction rather
than the dynamical interaction should be considered. The relevant
r_ parameter, therefore, should be defined with respect to Eo(pf).

instead of ¢_. The parameter r defined by

s0’

Yso = Vsw €00/ €qLE4),

(6.13)

is less than 0.2 in SrTi03, which excludes the possibility of
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the transition into the nonmetallic state.

In any case, semiconducting SrTiO3 is a normal metallic
system with the oo parameter larger than 6. Once such a system
is obtained, the plasmon has a large contribution to super-
conductivity and besides, its contribution can be evaluated in
the RPA qguantitatively well. Thus, it is not so surprising
that the calculated results of TC in the RPA reproduce the
observed T, quite well in such a low-carrier-density system.

Although the main mechanism of superconductivity in SrTi03
seems to be determined by the present study, several additional
investigations are necessary. The experiments on TCI30'32] were
performed before the technique to obtain the monodomain sample
in the tetragonal phase was developed. Thus, Tc is expected
to be reexamined in monodomain crystals. The stress effect
should also be measured again from various reasons. When Pfeiffer

and Schooley[85]

made an experiment of the stress effect on Tc'
they did not know the stress-induced ferroelectric transition

and could not relate the anomaly of ATC in Fig.4.2 to the softening
of the FE mode. As a result, they did not pay attention to the
[100] uniaxial stresses around 1.6 kb. More detailed study, then,
is necessary for these values of the stresses and also for the
[110] uniaxial stresses around 5.6 kb in order to confirm the
present theory. This study of TC under the stress will also

shed light both on the effect of electrons on the stress-induced
ferroelectric transition and on the electronic state in the

ferroelectric state.

As to the sample preparation, there have been many discussions
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on the difference between Nb-doped and self-reduced samples.[93'94]

Experimentally, Nb-doped samples have higher Tc and the largest

T, of 0.41 K for n = 1.5x10%%cm™3

in Fig.4.1 was obtained in
this type of the samples. One explanation of this difference of
Tc is that m*, or wt(O), or both of them may be different in

[64]

each type of samples, because Unoki and Sakudo and Jones

et aZ.[93]

suggested that compared with the Nb-doped samples,
the self-reduced samples might have a smaller magnitude of the
low-temperature distortion around the c-axis which is the origin
of the cubic-to-tetragonal structural phase transition. The
experiments of Tc for Nb-doped samples can be reproduced in the
present theory, if m* is taken to be 2.5 me. However, there was

also a suggestion[94]

that the difference of Tc from the sample
preparation might come from that of the number of paramagnetic

centers in these samples. Thus, we cannot obtain the conclusive
answer to the dependence of Tc on the sample preparation before

we can make an estimation of the decrease of Tc due to the

paramagnetic centers, ATC, approximately given by[95]
T
ATe ~ 4 T (6.14)

with the spin-flip scattering time Tgr in each sample.

There is also the problem of anisotropy. Although we have
treated all the quantities such as the effective mass and phonon
energies to be isotropic, the actual system is anisotropic, as
we have mentioned in 6-1. Thus the effect of anisotropy should

be estimated, but it seems to be small for the s-wave coupling
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of the Cooper pair, because the pair sees the guatities averaged
over the angle.

According to the band calculation of Mattheiss}79] the
second-lowest conduction band at the I'-point with a light effective
mass (m* of the order of 0.6 me) is also occupied when »n is
larger than 2.5X1019cm_3. The ratio of the number of the "light"
electrons n, to that of the "heavy" electrons in the lowest
conduction band ny is less than 0.1 for n < 2X10200m—3. Thus,
we have to investigate the superconductivity in a two-carrier
system. This problem constitutes the theme of chapter III.

If we apply the results obtained in §8 to the present case, we
can get the conclusion that the heavy carrier becoms super-
conducting and that the effect of the light carrier on the
superconductivity of the heavy carrier is negligible. Therefore,
the only change coming from the presence of the "light" electrons
in the present system is that we should replot the theoretical
curves of 'I‘C in Figs.6.1,6.2,6.5, and 6.6 as a function of ﬂh
instead of n = ng+ ny. When such a treatment is done, TC decreases
0

steeper with the increase of n for n > 102 crn“3 and a better

agreement with the experimental one can be obtained.
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CHAPTER III
PREDICTION OF SUPERCONDUCTING TRANSITION TEMPERATURE

OF MOS INVERSION LAYERS

Chapter III deals with an inversion layer formed at an MOS
(Metal-0Oxide-Semiconductor) structure. In §7, we describe the
basic knowledge of this system. Special attention is paid to the
two characteristics of the system, Z.e., the two-dimensionality
and the carrier-density-controllability. In addition, a multi-
carrier system is pointed out to be realized more easily in this
system than in bulk systems. Further, an acoustic plasmon is show:
to be made well-defined in this multi-carrier system. We give the
calculated results of Tc in such a multi-carrier system in &8
in order to clarify the effect of the two-dimensional character
of the plasmon on the superconductivity and also to investigate
the role of the acoustic plasmon in the superconductivity. The
interrelation between the plasmon and the acoustic plasmon is
made clear. In the last part of §8, we apply this general theory
to an inversion layer formed at the Si(lOO)/SiO2 interface. In
§9, we discuss the fluctuation effects and also make a speculation
about the mechanism of superconductivity observed on the surface

of a p-type InAs by Kawaji et al.[33]
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§7. MOS Systems

7-1. Preliminaries

An n-channel inversion layer is realized in an MOS structure,
when the electric field, applied perpendicularly to the surface
of the p-type semiconduétor by the gate voltage, is strong enough
to bend the conduction band below the Fermi level. 1In this system,
the motion of an electron perpendicular to the surface (the z-
direction) is quantized and the electronic states form two-dimen-
sional energy bands called electric subbands. Each subband is
composed of a quantized motion in the z-direction and a continuum
for motion in the plane parallel to the surface (the z-y plane).
The carrier concentration of the system can be controlled over
a wide range in a single sample by the gate voltage.

Owing to these two characteristics, that is, the quasi-
two-dimensionality. and the carrier-density-controllability, the
MOS system has been regarded as an interesting system to reveal the
quantum effect and the many-body effect and has been extensively
studied both experimentally and theoretically. 1In particular,
an n-channel inversion layer at the Si(lOO)/SiO2 interface is the
representative and also the most fundamental system in MOS physics
and the electronic properties of this system have been studied

for several years.[34]

It is now well-established that in this
system, many-body effects play important roles in determining
various physical properties, such as the subband structuref[96'97]
inter-subband optical transitionsEga] and the gquasi-particle

properties of the two-dimensional motion like the effective
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[96,99,100]

It is also known

mass}96’97’99]

and the g-factor.
that we can make a calculation of these physical properties in
quantitative agreement with experimental results by taking account
of the many-body effects in the RPA, or its refinement proposed

by Hubbard. [48!

In this section, we present the calculated results of the
subband structure of MOS systems formed on the surfaces of Si (100)
and III-V compounds such as GaAs and InSb. A multi-carrier system
is shown to be obtained more easily in MOS systems than in bulk
ones. It is also shown that an acoustic plasmon, which can exist
in a multi-carrier system in principle, can be made well-defined

in MOS systems.[lOl]

7-2. N-Channel Inversion Layers at Si(lOO)/8102 Interface
under Uniaxial Stress along [001] Direction
At low temperatures, an n-channel inversion layer at the

Si(lUO)/Si02 interface is usually composed of electrons in the

ground subband formed at the two valleys in the [100] direction
(I-valleys), since the effective mass perpendicular to the

interface of these valleys m; is heavier than that of other

1

valleys m;z' (See, Fig.7.1.) The uniaxial stress along the
[001] direction decreases the energy location of the two valleys
in that direction (2-valleys) and transfers electrons from 1-

[37]

to 2 -valleys. This change of the subband structure with

the increase of the stress and the carrier concentration ng is

considered in this subsection.
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Si(100)-MO0S
under Stress
along (001) direction

(001)

v =11. vy
1-valleys Ki-" 8 Xox=38
m1 =0'190me
m§=0-417me
g<| = gz =2

Fig.7.1. Constant energy surfaces of the conduction band of Si.
These six valleys are equivalent in bulk systems, but
the anisotropy of each valley makes them unequivalent
at the (100) surface. 1In the n-channel inversion layer
at the Si(lOO)/SiO2 interface, all the electrons are in
the 1-st valleys in the absence of the stress, while
the uniaxial stress along the [001] direction decreases

the energy of the bottom of the 2-nd valleys and transfers

electrons into these valleys.
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A, Hamiltonian

We treat the system composed of two kinds of valleys
(I- and 2-valleys) and assume that only the lowest subband of
each valley can be occupied by electrons. The Hamiltonian of

the system is written as
f{ = F\K 2 Hg * k{&‘lt ! (7a1)

where HS is the surface potential including the gate field, image
potential, and the contribution from the depletion layer charac-
terized by the total number of the negative charges in the layer

per unit area, n»n and H represents the Coulomb interaction

dep’ el-el

between electrons. The kinetic energy, H is written by

Kl
DO g | B i i
HK=2‘.‘§{h2m:{3y 2m*§(31‘ awl)'fs‘l}, 12

where m;i and m; are the effective masses of the 7-th valley

in the z-direction and in the z-y plane, respectively, and 8

is the energy location of the bottom of the i-th valley. Although
Z-valleys are anisotropic in z-y plane, they are approximated to
be isotropic and mg is taken to be the density-of-states mass.

We assume that the stress controls 8,78, only, and neglect its
effect on the effective masses, since it is very small.[loz]

When we apply the stress of 1 kb, the value of 8178, becomes

about 7 meV in case of Si.
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B. Variational method

We employ the variational method to determine the subband
structure, that is, the number of ‘électrons in the i-th valley,
ny and the wave function of the ground subband in the valley,
xi(z). As a trial function for xi(z), we use the following

variational function:

Ki(z)= 2h z expi JL}, (7.3)

where bi is the variational parameter. This gives better results
than the variational function proposed by Stern and Howard.[103]
With the use of eq.(7.3), the expectation value of H is calculated

as follows at T = 0 K:

{HY> = <H>K -\'<H> '\'(H? + <H> CoRR ! (7.4)

where the kinetic energy in z-y plane <H> is written as

KE
<H>KE=‘2;—%3I :‘;—'Li' P* Mo, | (7.5)

with p = (px'py)' Here, 9; is the valley degeneracy, nipo is the

distribution function of the electron of the Z-th valley, momentum

P, and spin ¢. The Hartree energy <H> is given by

H
52, bi (2ydme 1
Wy=IZ isi+ g3 57 + 7 TE 5
tme
. 1y Ys G : .
¥ ll’eksr( 7 Xs ”:)‘ bi } ‘PV+2|\' mm r(j) e (7.6)

x (bi’/bt)% ]“\‘pcn:'p'r',
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where T'(x) is the gamma function, P and Kox 2Fe the dielectric
constants of the silicon and the oxide, respectively, and h(x)

is defined by

A = (3+nx+l\x‘+3x3)/3(Hx)\"j. (7.7)

As mentioned in 7-1, the exchange and the correlation effects are

important in this system and they are treated in <H>, and <H> . qpR?

respectively. The Fock energy, <H> is calculated as

Fl

B ooy i s s B '

Hop=-3TZ H,,{-q, BV Up1) Mips Nipr 3it Soc
,3: 2

.n Z
3 ) ) 4z F;\z Vn\f}.z) \m )“‘EJ‘F‘?‘) - (7.8)
1 AJ?‘L
with n,= ZL g,n, and the Fermi wave number of the <-th subband
pcd vt ipo

Pg; =

; JZnni7gi , where the bare electron-electron interaction, qu(q),
T

is given by

0 s [ ol 5
Vis =Vl @1 MM“Q%}NQ%] G
with

- pem— -
The form factors <e qla-z |>ij and <e ¥ >  are defined by
T

' 70 - . -%iz-Z!
<e~‘biz-zi>r_ = | d= .1’:(2)2)0 al‘t"?ﬁé(“t’)z 15 ez (7.11)
i

/
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and

134

~ 00
o 2y = jadz ')(it?f" e‘/ (7.12)

respectively. The contribution of the correlation effects <H>

CORR

is calculated in the RPA and is given by
. ‘-‘_\JV BOAS?_ p e 3 = T 0“’
\H>CORR- L %L_‘Hi /Lﬂ ak‘%l‘ﬂ) _TY‘[Hlb\\Sl)V «T)]}, (7.13)
with

£y, ) =det (1 + THIRD VU ) | b
Here, 1 is the unit matrix, Vo(q) and II(g,iR) are defined by

0oy — W

Vo= (Vyp), (7.15)
and

Thiso= (T Y,‘j), (7.16)

respectively, with the polarization function in the RPA, Hi(q,iQ),

calculated at T = 0 K as

g, )= w'*{1—[L(1/fd~‘—x~‘+1)‘+4d:‘x% —d-‘+x~‘~\)1.é/1‘}
% = Pl IS I iy (1e1T)
with
¥
m; (L
d‘: b Ay = .
{ o omoh i cf:/.?Ff‘ d (7.18)
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The realized state under the given nge ndep‘ and the stress
can be obtained as follows. Under some fixed {ni}. the variational
parameters, {bi}' are determined by

IH> /by =0,

(7.19)

and we substitute these values into <H> to get the total energy.
Then we change {ni} to find the values to minimize <H>. In per-
forming this procedure, we use the approximate forms for

carGlazall,

- _— o r
and <e q3>i for example, for <e qlz g !>11

(e—%lz—z'l>“= (1404913 1)/ (1+ L.2370X + 0.5941 X% )/

(7.20)
with 2 = q/bl and for <e_qz>1
Sl R : 2 1403 683A% + 0.054414)
<> = (1401632207 (1116678 X+ 1) 2027 +036 - y
(722000
with the same z as in eq. (7.20). These forms are obtained from

— — ' -—
the asymptotic behaviors of <e q|a-a |>ij and <e qz>i at both
g+» and g+0. The relative errors of these approximate values
to the exact ones obtained by egs. (7.11) and (7.12) with the

wave function of eq. (7.3) are less than 0.01 for every d.

C. Calculated results

In case of the Si(lOO)/SiO2 system, we can use the values,

= = * = = = =
e 10184, o A8y mzl 0.916 m » m#* m¥* 0.190 m, s m* 0.417 m

22 1 2
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and g,= g,= 2, where m_ is the mass of a free electron. An
1 2 e

example of the calculated phase-diagram is shown in Fig.7.2 for

the case of n = 10]'10mm2

dep . The stress is characterized by

1784- When 31-32< 6 meV, all the electrons are in the I-st
12 -2

valleys for ns< 6x10~“cm

8.,-8
, while for 31-32> 13 meV, electrons
are in the 2-nd valleys first and then begin to transfer to the
I-st valleys with the increase of ng. For the intermediate
values of 8,784+ the situation is a little complicated. As ng
is increased, electrons are in the 2-nd valleys first and then
all of them transfer into the I-st valleys. With the further
increase of ng, some electrons begin to enter into the 2-nd
valleys again.

The change of nz/ns with the increase of ns is plotted
in Fig.7.3 for several fixed values of the stress. The solid

and the broken curves represent the cases of = = lOllcmm2

dep
12

and n = 10 cm-z, respectively. The avérage depth of the i-th

dep
subband, <Z>i' calculated by

0 —, 2
(%> = -’qr(?)/b;, (7.22)

is also shown in the figure. It is the characteristic of this
system that <z>, is almost twice as large as <2>;. 1In any case,
if we control the gate voltage and the stress properly, two
kinds of valleys are simultaneously occupied by electrons and

we can have an example of multi-carrier systems in MOS structures.
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70— . . :
| Si(100) under uniaxial stress 1
((001) direction) A
60} - 1o -2 o
Ngep=10 cm 7
Ny _

50 E-O-O -
~ | 2-valleys 0.2 P
> m¥=0.417 0.4
g sof-* =
s
I 30
[
| e
e e R et el

20 =

101

1-valleys
i ; mT: 0-190
1 | 1 } H : 1 l
0 5

2 3
Ng: { ‘lour:rr\'2 )

An example of the phase-diagram of the electron population
in each kind of valleys calculated in the RPA. The ratio
of the electrons in the I-st valleys to the total electrons,
nl/ns, is indicated by the dashed lines. In the region
indicated by "I-valleys", all the electrons are in the

1-st valleys, while in the region of "2-valleys", they

are in the 2-nd valleys.
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Calculated results of nl/ns’ <z>1 and <3>2 as a function

of ng under several values of the stress characterized

by 8,7 84. Solid and broken lines correspond to the

results for the cases of n = lOllcm— and » = 1012
dep dep

cm 2, respectively.



= 27 =~

7-3. N-Channel Inversion Layers on III-V Compounds

Compared with the case of Si, the effective mass at the
l'-point in the conduction band is about one tenth in III-V
compounds such as InAs and InSb. Thus, electrons in an n-channel
inversion layer on these materials usually occupy more than two
subbands, which is confirmed both experimentally and theoreti-

Moreover, when a gate voltage is strong, both
I'-valley with a light effective mass and the second minimum
valleys (X- or L-valleys) with a heavy effective mass can be
simultaneously occupied by electrons.[36]

Calculations of the subband structure can be done in a
similar way to that in 7-2. 1In the present case, however, many-
body effects are relatively small and can be neglected, while
the effect of nonparabolicity of the TI'-valley should be
considered.

Taking account of the nonparabolicity in the Kane's modelElOS]
we calculate the subband structure for several materials. An
example of such calculations is shown in Fig.7.4, in which an
n-channel inversion layer on the surface of a p-type GaAs is
treated. The energy levels of the subbands in the I'-valley,

EE, those of the subbands in the second minimum valleys (X-valleys),

E?, and the Fermi level p are calculated as a function of ng.

The origin of energy is the top of the valence band at the inter-
face. The subband structure changes with the increase of ng, as
follows: First, all the electrons are in the ground subband formed
at the T'-valley. Then, some of them occupy the first—excited

subband of the T-valley and a multi-carrier system is realized.
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Fig.7.4. Energy levels of the subbands as a function of ng in
an n-channel inversion layer on the surface of a p-type

GaAs whose dopant concentrations of acceptors and donors

are NA and Ny, respectively. The series of e;, s;, e
shows the subband levels formed at the I'-valley, while
X

that of eg, € """ shows these at the X-valleys. All

the energies such as the Fermi energy u and the energy

location of the bottom of each valley, eg, or ex, are

g
measured from the top of the valence band at the surface.
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With the further increase of nes electrons begin to transfer to
the ground subband in the X-valleys and a different kind of a
multi-subband system is obtained. It must be noted here that
E% increases more slowly than EE’ because the effective mass of
the X-valleys are much heavier than that of the [I'-valley. Thus,
in MOS systems, the energy separation between the TI'-valley and
the X-valleys is made smaller than that in bulk systems and the

X-valleys are occupied by electrons more easily in MOS systems

than in bulk ones.

7-4. Acoustic Plasmons in Two-Subband Systems

As we have seen in 7-2 and 7-3, MOS systems provide several
kinds of multi-carrier systems. In such systems, there can be
a collective mode other than the plasmon, that is, an acoustic
plasmon (AP) in which electrons of each subband oscillate out of
phase. Thus in this subsection, we investigate the AP in a two-
subband system and study the conditions to make it a well-defined

mode.

A. Hamiltonian in a second-guantized form

We consider the same system as that treated in 7-2. The

Hamiltonian of this system can be written in a second-quantized

form as

H=Z &, Cou Cipr + ZZZZ\/ §) o

C:
Upe: ij pP'ed’ 150 épor }I’G" G s’ C;Ms / (7.23)
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where Cipc is the anihilation operator of the electron with the
momentum p and the spin ¢ in the Z-th (Z = 1, or 2) subband whose
single-particle energy Eip is given by

=

; iy ?2/2m? s &1-; (7.24)

with the Fermi energy of the ¢-th subband ¢ ﬂni/g.m%. The

£fi T

number of electrons in this subband n. and the wave function
xi(z) are determined by the method described in =258 The

interaction ng(q) is defined in eq.(7.9). In eq.(7.23), we
neglect the valley-exchange interactions, as usual, owing to

the orthogonality of the Bloch functions.

B. Analytic continuation of the polarization function

The collective excitation modes are found in the form
of zeros of the retarded dielectric function ER(q,w), defined
by eq.(7.14), in the lower w-plane. The retarded polarization
function H?(q,w) in the lower w-plane is obtained by the analytic
continuation from the upper w-plane. At T = 0, H?(q,w) is

calculated as

*

m;
TT? ({ W = = (ZI; Bt ,Jo{; “GH A== =i N¥ 2 =1 )/1:, {7:25)

with z, and o, defined in eq.(7.18). The branch of vz in the
complex z-plane is so chosen that Im vz 2z 0 for the first;

second and third quadrants and Im vz < 0 for the fourth quadrant

for the case in which |Im w| is much smaller than the Fermi energies,



=1 S s

Efl and Efg'

C. Analytic solution of the dispersion relation

In a two-subband system, an AP is the mode in which the
plasma oscillation of the subband having the slower Fermi velocity
is screened and Landau damped by electrons in the subband
having the faster Fermi velocity. For the sake of simplicity, we
assume here that the 1-st subband has the faster Fermi velocity.
Then for small g, the AP is the mode in the following region in

the excitation spectrum:

405 ¢ w ¢ Uy, )

where Ves is the Fermi velocity of the ¢-th subband. In such a

region, H?(q,m) has the following approximate form:

R l ?)TF'[ oW
( ~ —_— . —_—
Ty “30 VT (141 o ), S
and
i %'Uflz ez
Tl |
i 20y Wt - (7.28)

Here, VO(q) is defined in eq. (7.10) and dpps is the inverse of

the Thomas-Fermi screening length of the <-th subband given by

*
%TFi =2e*m; &/ . (7.29)

When egs. (7.27) and (7.28) are put into ER(q,m), we can solve
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the equation of

A (3, wy-i¥y ) =0, (7.30)
as
Wy = Vap &, (7.31)
with
Vap = o Srr2/2%e - Vi {'Ap ’ (7.32)
and
Yy /w%___% %%{Lﬂ?_ / (7.33)

where fAP is defined by
' Y
&-APa { \'\" ')z; %TF‘ [ 2 < \Z‘Z'l),z— (lZ‘Z’\Z"<IZ‘ZI‘722]}l(7.34)
with
© T AP /
(lz-z’ly‘js [ dz i (z)fodz'xj =z 1Z2-Z'\ . (7.35)
To make the mode a well-defined one, mq in eq. (7.31) should satisfy

the inequality (7.26) and yq/wq in eq.(7.33) should be small.

Among these conditions, the most important one is whether the
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sound velocity v is greater than v or not. This leads to

AP f2
the inequality for the presence of the well-defined AP as

~2
?z’mj [29iM > ]L,qp ) (7.36)

Therefore, the larger value of fAP is more advantageous for
the AP. In addition, eq.(7.33) shows that the Landau damping
is also reduced for the large fAP' In order to see the physics

of this condition, we consider the model case of
2 X
Xi (Z) = S(Zhi"\) , fém. L=\,o12. (7.37)

Then fAP is calculated to be

¥
e 4/\*' 2% 3 2Tl (7.38)

If the spatial separation of the two subband |21—22| is lérge,

fAP becomes large and the AP is well-defined. Physically, when
the separation between two charged planes is much larger than

the screening length, the plasma oscillation of one plane cannot
be fully screened by the other one and the restoring force is
strong enough to make the AP a well-defined mode. In bulk
multi-carrier systems, the factor analogous to fAP is v2/3 and
it is more difficult for the AP to be a well-defined one. In this
way, MOS systems have a great advantage for the presence of the

AP.
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D. Numerical calculation of the dispersion relation

In the previous discussion, we treat the case of the small
g, but here we show the behavior of the AP in the whole (g,w)
plane by the numerical solution of eq.(7.30). An example of
the calculated results is illustrated in Fig.7.5, in which we
treat the case of a two-subband system, one in the I'-valley and
the other in the X-valleys, in GaAs. Besides the dispersion
relation of the AP, that of the plasmon is also shown which

is proportional to /g for small q.[35]

There are two kinks in
the curve of wq. One is for q = Peg and the other for g = 2.7pf1.
They are due to the abrupt change in the screening of electrons in

the 71-st subband which comes from the existence of the Fermi
surface. Thus this is just the same mechanism as Kohn anomaly

in the phonon spectrum. This effect also causes the jump in yq.
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where o and x. are defined in eq. (7.18).
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§8. Superconductivity in MOS Inversion Layers

There are two aims in this section. One is to clarify the
effect of the two-dimensional character of the plasmon on super-
conductivity, which is treated in 8-1. The other is to investi-
gate the role of the acoustic plasmon in the superconductivity
in a multi-subband system, which is discussed in 8-2. The inter-
relation between the plasmon and the acoustic plasmon is also
the problem to be studied in 8-2. On the basis of these investi-
gations, we predict the superconductivity in an n-channel inver-
sion layer at the Si(lOO)/SiO2 interface in 8-3.

For the sake of simplicity, the subband depth <z>i is assumed
to be zero in 8-1 and 8-2, which reduces the bare interaction
ng(q), defined by eq. (7.9), to Vo(q), given by eq.(7.10). The
effect of the finite depth is taken into account, when we treat

the real system in 8-3.

8-1. Plasmon Mechanism of Superconductivity in Two-Dimensional

Systems

A. Gap equation in a two-dimensional system

We consider the superconductivity in a single-subband system
here and discuss the role of the plasmon whose dispersion relation
is proportional to vq for small q.[35] The Hamiltonian of the
present system can be given by eq.(7.23), in which we take only
the 1-st subband into account. The gap equation for the gap
function of this subband Az(w) in the weak-coupling theory at

the transition temperature Tcl can be derived in an analogous
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way to that in a three-dimensional system, given in 2-1, as

[o¥5) /
A== do' 4 2 K oww'ya, @)
i -611 o TQ“& ZTEIE<|( ) ) \ / (8.1)

where the kernel K,(w,w') is different from that in eq.(2.18)

in the present two-dimensional system and is given by

' kK
: w2 o 348 0 ng TmVu$)
KW= o =V +) 742 ]
([ J[(M =4 ][%‘ (e-p)
* FW’ d "0
W1J . 1. 2,49 ol ' | V )
T Al IR T2 i /1 83D, e
with p = ¢2m§(af1+ w) , p' = /2m*(z w') , and the effective

interaction V?l(q,ﬂ}. Once the gap equation (8.1) is obtained,
the numerical method to solve this equation is similar to that
in 2-2. The only difference is in the calculation of Kij defined

by eg.(2.34), that is, egs.(2.37) and (2.38) should be changed

into

Kji 8 Ki&) (8.3)
and l F\
fie- B
48 ) 1 TR } IhFel
i ) )
1 1’3"”; G ) ]5'”'”?" L PR 1345
A R 2RE T T 27:3
(8.4)
\E;-+\mw .
£ %J \ d V\?(L\ﬂ)/

4 (1)
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respectively, where sgn(x) is defined in eq. (2.73).
In the following discussions of the present subsection,

the subband suffix "1" will be supressed.

B. Analytic solution

As in the case of three-dimensional systems, we start from

the plasmon-pole approximation, given by

e )= W () 5 (6~ (059 \/0(?,)/

(8.5)
with
Wy (8) = o 27R* N5 % /e
F /7 (8.6)
and
~J ’ § r
D= 0p\%) /4 1= VR | (8.7)
For the static interaction VR(q,D), we take the Thomas-Fermi
approximation, given by
R = 2
V74,0 = 27e" e ( g+ §r), (8.8)

with

*
Ire=2e*m gv/){,/ (8.9)
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where the valley degeneracy of the I7-st subband gi is rewritten
into g, here. When eqg.(8.5)is put into eg.(8.2), the kernel can

be calculated easily and an example of the calculated results

is shown in Fig.8.1 by the solid line. Compared with Fig.3.1,
this kernel varies more steeply near the Fermi surface. To see
the origin of this difference, K(x,x') is calculated approximately

for small x = w/sf and x'= w‘/sf as

oaze Ny U o X
Kexl)y= AL TF)+ &, FT Bl 2)

where B(p,q) is the Beta-function and A(x) is defined by

JE = i i ,\ (8.11)
i Fee T = AT

The square-root singularity at x = x' # 0 stems from the /g-depend-
ence of w_(q).
Considering the behavior of K(x,x') in eq.(8.10), we take
the function F(x) in the model kernel of eq. (2.50) as
fr
e
2 0‘40‘63 J—- J_ (8.12)
i

where r, is defined as usual by

et

Y = —
S SEona . (8.13)

The function F(x) in eq.(8.12) has a steeper behavior than that
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Fig.8.1l. An example of the calculated kernel and the corresponing
gap function in a two-dimensional system. Solid and
broken lines are the results in the plasmon-pole approx-
mation, given by egs. (8.5)-(8.8), and the model introduced

in 2-3.B with the use of F(x) in eq. (8.12), respectively.
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in eq. (3.7). The kernel in this model, Z.e., K(x,0) = AO+ ) ;

and the corresponding gap function are plotted in Fig.8.1 by the
broken lines. According to the discussions in 2-3.B, in particular,
inequality (2.55), we notice that a two-dimensional system is

more favorable for the presence of the plasmon mechanism of

superconductivity than a three-dimensional one. In fact, the

condition of (2.53) reads in the present case as
s 2 1.5 ’ {P-L Iy =1 b (8.14)

and the critical value of r is one fourth of that in a three-

dimensional system, given by inequality (3.9).

C. Numerical results

Numerical results of TC in this approximation, that is,
with the use of the effective interaction given by egs. (8.5)-
(8.8), are shown in Fig.8.2 for several values of m*, x, and 9,
as a function of Tg- In order to see how TC changes with the

choice of the approximation to mp(q) in eg.(8.8), calculations

are done with the other forms of Gp(q}: The Lundqvist‘s[43]
form, given by
B, =@ J 14 (e 3y
f FT‘ 1tr 7 (8.15)

and that obtained by the RPA as

4 4 \
) = Wel} + —- (8.16)
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Fig.8.3. Calculated Tc scaled by the effective Rydberg as a

function of the carrier concentration n scaled by the

inverse of the effective Bohr radius squared, where m*
is in the unit of m_.

The lines indicated by THOMAS-
FERMI, LUNDQVIST, and RPA correspond to the results
in the plasmon-pole approximation with the static

interaction given by egs. (8.8), (8.15) and (8.16),
respectively.
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These approximations have a correct behavior for very large q,
that is, &p(q) approaches to q2/2m* for q >> Pg- Results of
Tc scaled by the effective Rydberg are shown in Fig.8.3 as a
function of n/(m*/K)z. The overall structure of Tc does not
change very much with the choice of the effective interaction,

This conclusion is the same as in the bulk systems in chapter I.

8-2. Role of the Acoustic Plasmon in Superconductivity

We turn to consider the superconductivity in a two-subband
system described by the Hamiltonian (7.23) and evaluate the
contribution of the acoustic plasmon to the superconductivity.
In this system, the gap equation for the gap function of the
1-st subband Al(w) is the §ame as that of eq.(8.1). The effect
of the presence of the 2-nd subband appears only in the calcula-
tion of V?I(q,iQ). We employ the RPA to evaluate V?l(q,in),
partly because we have already seen in several examples that
this approximation gives rather good results of Tc and partly
because various physical properties of the MOS system are ex-
plained well with the use of this approximation, as mentioned

in 7-1. Thus V?I(q,iﬂ) can be calculated as

V\? (40 = VOig) /U + (1,402 + T, (i)VD) | 6.7

where Hi(q,in) is defined in eq.(7.17).

A. Contribution of the acoustic plasmon

Since <z>, is taken to be zero here, the factor fAP' defined
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by eq.(7.34), becomes unity and the condition (7.36) for the

presence of the acoustic plasmon becomes
* *
Lmy > 23 m (8.18)

so that for the time being, we consider only the cases in which
the inequality (8.18) is satisfied. An example of the calculated
Tcl as a function of nz/nl is given in Fig.8.4. The carrier
concentration of the I-st subband n, is fixed and is so chosen as

1
= 3.6, where r; is defined by

m’ e/ frn; . (8.19)

c A
o give r_,

Vs

1}

At this carrier density of = T in the plasmon mechanism, i.e.,

7" e
ch evaluated in the absence of the 2-nd subband, is less than

=3

10 X(mf/KZ) degrees Kelvin, where m* is measured in the unit

1
of m, - Therefore, Tcl in this figure mainly comes from the
contribution of the acoustic plasmon produced by electrons in
the 2-nd subband.
In order to understand the physics involved in the curve
of Tcl in Fig.8.4, let us evaluate the characteristic energy of

the acoustic plasmon wy which corresponds to the Debye energy of

the phonon Wrye The sound velocity of the acoustic plasmon v

AP’
given in eq.(7.32), can be rewritten into the form of
*
7
v = U m_ 7 (8.20)

AP o ZWE* }2,
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With the use of this Vapr W, is estimated to be

g % o
Wy = 2Py Vpp = 4 € amF T, (8.21)

Thus, Fig.8.4 is considered to show the change of T, with the

1

increase of the parameter mo/efl. When nz/nl is less than 0.1

for wO/Efl to be smaller than about 0.2, T increases in proportion

cl
to ¢n27n A-that jds; £o wyr as indicated by the broken straight

line in the figure. An analogous situation has been observed in
the phonon mechanism of superconductivity in metals in which
wD/Ef is of the order of 0.0l. In these metallic weak-coupling

superconductors, TC is proportional to w which is called the

D [ 4
isotope effect. Therefore, the behavior of T, for the case of

”2/n1 < 0.1 can be understood as an effect equivalent to the
isotope effect in the phonon mechanism.

g7 are increased further,
namely, at wo/efjm 0.4 and

As n2/n1 and consequently mo/e

; ; "
TcI reaches its maximum at ni nz,
then decreases rapidly. We can clarify this behavior, in particular,

the decrease of T, for large nz/nl by considering the range of

1
the attractive interaction induced by the acoustic plasmon.

Since the acoustic plasmon is the mode in which the plasma oscil-
lation of carriers of one kind is screened by carriers of another
kind, no charges are produced by the excitation of the acoustic
plasmon in the system on the average, in contrast with the case

of the plasmon. As a result, the acoustic plasmon does not couple

with electrons for small g and brings about a short-range attractive

potential, as phonons do. In such a short-range attractive
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potential, it is difficult to form the Cooper pair, if wo/efl
is larger than unity for the kernel in the gap equation not to
have a steep change near the Fermi surface. This is the reason

why Tc becomes small rapidly for large nz/nz.

1
In this connection, we will comment briefly on how the
differnce in the range of the attractive potential works in the
shape of the kernel in the gap equation. 1In case of é long-range
attractive potential, only the kernel near the Fermi surface has
a large effect of the attractive potential, even if the potential
is induced by the mode having the energy larger than the Fermi
energy, as mentioned in 3-2.C. This is due to the fact that only
the scatterings with small momentum changes are important in such
a long-range potential. 1In case of a mode which produces a short-
range attractive potential, on the other hand, the momentum
changes have no such regtrictions, so that the kernel within the
range of the energy of the mode has a large effect of the attractive
potential. Consequently, when the energy of the mode is larger
than the Fermi energy, the changing rate of the kernel near the
Fermi surface becomes small. This makes the appearance of the
superconductivity difficult, as we have learned in 2-3.B. Thus,
when the energy of a mode is larger than the Fermi energy, it
is preferable to the occurrence of superconductivity for the mode
to induce a long-range attractive potential.

In any case, the acoustic plasmon mechanism of superconduc-
tivity bears a strong resemblance to the phonon mechanism. 1In
a sense, the phonon mechanism may be regarded as a kind of the

acoustic plasmon mechanism, because in the jellium approximation
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to the system of ions, the phonon is nothing but the acoustic
plasmon of the ions in the electron-ion system. Accordingly,
we can consider that Fig.8.4 shows the overall behavior as to
how the contribution of the phonon to superconductivity changes

with the increase of the parameter mD/sf.

B. Interrelation between the plasmon and the acoustic plasmon

Now, we investigate the interrelation between the plasmon
and the acoustic plasmon in the superconductivity. This study
will clarify how the Cooper pair is formed in the system where
the short-range attractive potential and the long-range one

exist simultaneously. As we have seen in 8-2.A, Tci as a function

of ng/nl has a maximum at n1% ng. We have also calculated

several other cases and have always obtained the result in which

Tcl reaches its maximum at nav g In the following calculations,

therefore, we treat the case of n_ = n_ mainly.

v 2
Figure 8.5 shows the examples of the calculated results of

Tcl as a function of n, in a two-subband system. Every curve

in the figure behaves in a similar way: For low n B 7 LOT

1!

the case of Tag & 20, Tcl is almost the same as that in the plasmor

mechanism, that is, Tcl in the single-subband system with the

same 7. indicated by the broken curve, irrespective of the value
I

of mE/m;. When ", is increased, Tcl

its maximum at rSI= 4 v 5 and then decreases. It is also shown

increases first, reaches

in the figure that a large mz/mj is preferable to obtain a large
contribution of the acoustic plasmon.

In order to study this behavior a little minutely,
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Fig.8.5. Transition temperature Tc1/(m§/K2) as a function of
n1/(m;/K)2 for several values of ms/mg and g, in
two-subband systems calculated in the RPA, where mﬁ

is in the unit of m,- The broken curve represents the

result in the plasmon mechanism, that is, the result

in the absence of the 2-nd subband.
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we give an approximate kernel for the case of g9;= 9= 1L, n,= Mgy
’ = = % * 1 1
T.€:r Pgy Pey = pf’ and my << my by extending the idea of the

plasmon-pole approximation to the present two-subband system as

follows. First, we change eq.(8.5) into the form of

Inm V,,R(z,m - - V' {wle 5 (w'— )

+ i Wap ) 8w~ a,fp (3))},

T4 (8.22)
with
37, 2 ny N,
Wp () = 42NE ?(W“*;,ZT)/K d (8.23)
= wl’m”/‘ + 8 e
Pt &
Wap () = m‘;‘%%rn/l['ﬂrn*‘ﬁ) , (8.25)
and
‘:’IAP(?J) = wﬂP(%)')/(%"'zTH*g?Fz)/grpz y (8.26)
where qTFi is defined in eq.(7.29). In eq.(8.22), the first term

represents the contribution of the plasmon and the second one

that of the acoustic plasmon. The frequencies of wP(q) and wAP(q)

are calculated by an analogous way in 7-4.C, while other factors
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. 1Y n, . .
like mp(q)/wp(q) and wAP(q)/wAP(q) are determined so as to give
the correct strength of the coupling constant with electrons.
The calculated kernel in this approximation reproduces the
kernel calculated in the RPA well.

For small x = w/e Kl(x,O) has the form of

f1,

m' P
K, (x,0) = 4 (—if—) +F () +/L;p(X)/

""*"""* ™ Sreitlre2
(8.27)
(8.28)
and
¥
o x) = _‘.._Z'Bi_.m2 M Ix l[n
AP0 = W mr $rrs + S1F 2 Ixt , (8.29)

where A(x) is defined in eq. (8.11).
When the carrier density is low and pf is small, the contri-
bution of the plasmon Fp(x) dominates that of the acoustic

plasmon F__(x). Therefore Tcl is determined almost only by the

AP
plasmon in this region of n1. Physically, when a carrier concen-
tration is low enough for the plasmon to have a large effect on
the superconductivity, the wave function of the relative motion
of the Cooper pair has a character convenient for the long-

range attractive potential induced by the plasmon. The acoustic

plasmon, on the other hand, shows only a small effect in this
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region, because this mode induces a short-range attractive potential,
as mentioned in 8-2.A.
When ny is increased, the contribution of the plasmon, Fp(x),

decreases, while that of the acoustic plasmon, F._(x), increases.

AP

As a result, there is an optimum r_ value at which the system

1

makes full use of both contributions. With the further increase

of T is almost determined only by the acoustic plasmon

Ry o

and decreases gradually, but even in very small r the super-

s1,

conducting state can be brought about by the contribution of

the acoustic plasmon F__ (x).

AP

cl Tc of the whole system

In the foregoing calculations, we have devoted ourselves

to the calculation of Tc However, in a two-subband system,

7°
the 2-nd subband has also the possibility to become super-

conducting and the transition temperature of it, Tc2 should
r

be calculated. The transition temperature of the whole system
Tc' therefore, cannot be given until the higher temperature

between Tc and TC is known.

1 2

Calculations of Tc are done by the exchange of the roles

2

of the two subbands in the previous calculations of T Examples

cl®
of calculated TC are shown in Fig.8.6. Since m;/mz plays an

important role in the acoustic plasmon mechanism of superconduc-
tivity, as we have seen in 8-2.B, Tc is plotted as a function of

mE/m; for the two cases of r_ .= 2 and B 19, in which only the

s1 1

case of mgfmf > 1 is treated. When m;/mﬁ is not so large, in

particular, when it is less than two or three, the contribution
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of the acoustic plasmon is rather small, so that both Tc and 'I‘C

7
are mainly determined by the contribution of the plasmon. In

2

such a case, the subband having a heavier effective mass is more

advantageous. This leads us to the result of TC = Tc2 for both

cases of r = 2 and r _= 19.
s1 sl

For the case of very large mg/m*, on the other hand, the

acoustic plasmon has a considerable contribution to Tcl and

makes Tcl high, in particular, for the case of small r As

s1°
for the 2-nd subband, however, wAP(pfg)/sz is so large that the

acoustic plasmon does not contribute to Tc The change of Tc

2°

comes from that of Lo~ mg/mj X r.; in the plasmon mechanism.

2

In this way, Tc becomes equal to Tcl for very large mz/mj owing
to the difference of the contribution of the acoustic plasmon

toi Tt
ci

b. Summarx

To sum up the results obtained in the present subsection,
there are two restrictions in order for the acoustic plasmon to
play the main role in the suéerconductivity in a two-carrier
system. First, the carrier concentration of the superconducting
carrier should be nearly equal to that of the other carrier and
at the same time, it should be high enough to provide the r, para-
meter smaller than five. Secondly, the effective mass of the super-
conducting carrier should be much smaller than that of the other
carrier. If these conditions are not fulfilled, there are other
mechanisms such as the plasmon one to play the most important

role in the superconductivity, even though the acoustic plasmon
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has always some help for the system to become superconducting.

If we regard the phonon in a metal as an acoustic plasmon
in an electron-ion system, the above two conditions are satisfied.
Thus we can have an explanation why the phonon mechanism of

superconductivity is realized in metals.

8-3. Application to Si(lOO)/SiO2 Interface under Uniaxial Stress
along [001] Direction
We explore the possibility of the superconductivity in
an n-channel inversion layer at the Si(lOO)/SiO2 interface
which is the most typical and fundamental MOS structure. As
pointed out in 7-2, a two-carrier system can be obtained even
in this material by the control of the uniaxial stress along
the [001] direction, but according to the results in 8-2.C,
the acoustic plasmon will not give an important contribution
to the superconductivity, because the parameter mg/mf is
about 2.2 in this case. In order to see this, an example of the
calculated Tci is shown in Fig.8.7 as a function of nl/ns.
In this figure, the total carrier concentration ng is fixed to
be leollcm-z, while n, can be controlled by the application
of the stress. As in the case of Fig.8.4, the maximum Tci,
which will be denoted by Tgix, appears at n,v n,. When we
compare ngx with Tgi which is defined by Tci in the plasmon

mechanism, that is, Tci in the single-subband system (ni = ns),

T:;x is only 1.5 times as large as ng and T??x is larger than
sz by a factor of 5. Therefore the effect of the acoustic

C
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for the case of Ne= 5><10ll cm—z in an n-channel inver-
sion layer at the Si(lOO}/SiO2 interface under the

uniaxial stress along the [001] direction. The ratio

n__l./ns can be controlled by the stress.
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plasmon is found to be small for both Tcl and Tcz. In such
a case as this, the subband having a heavier effective mass is
preferable to the appearance of the superconductivity, as

shown in 8-2.C. Consequently Tc is almost always larger

2
than T ..
Gl
Until now, we have assumed that <Z>i = 0 in every case,
but in real inversion layers, <3>i is finite. When we treat
the case of finite <2>i the effective interaction between
r

electrons in the I-st subband V?l(q,iﬂ) should not be calculated

by eq.(8.17), but by the form of
Vit i = Vv @) + T i LV & V2 - v )l
[ {1+ T, 0 V) + Thl,i Vo2 4)

TG0 T O O - VST 6.0

The method of calculating the subband depth S8 has already
been described in 7-2.B and the examples of the calculated
results of <z>. are given in Fig.7.3. According to this
figure, the subband depth <3>i can be controlled rather widely
by the total number of the negative charges in the depletion

layer per unit area = ¢ Or equivalently, by the application

dep
of the substrate bias.

Using these results of the subband depth as a function

of n and the stress, we can calculate Tci as a function

s, ndep,
of these parameters from the first principles. An example of

the calculated results is shown in Fig.8.8, in which Tci is
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plotted as a function of B for several values of ndep and the

stress is assumed to be so controlled as to give ny = ng =n_
/2. The transition temperature of the whole system is always
given by Tc2 and is at most 10 mK. It is also shown that Tc

depends strongly on ns and ndep' This feature will provide a great
help to confirm the present theory by the experiment.

Besides the present mechanism, the contribution of the
acoustic phonons is also estimated in this system just as the
same way as in 6-4 and we obtain the conclusion that the relative
error of the results with the phonons to those without them is
always within a few per cent, when the deformation potentials,

Eu and 24, are taken to be usually accepted values. {Eu= 9.0 ev
[106])

and Ed= -6.0 ev
In conclusion, the plasmon has the main effect on TC in the
bresent system and the acoustic plasmon works only subsidiarily.
Thus, the main role of the stress is considered not to make the
system to be a two-carrier system, but simply to transfer electrons
into the 2-nd subband having a heavier effective mass. Accordingly,
this system is not an interesting system from a point of the
acoustic plasmon mechanism of superconductivity. Compared with
this system, n-channel inversion layers on the surface of III-V
compounds seem to satisfy the requirements for the acoustic
plasmon mechanism, because the effective mass of the second
minimum valleys is about from ten to fourty times as large as that
in the T'-valley. From such a reason, investigations into these
materials are highly expected, although they are far behind from

those into SiMOS structures at present, both experimentally and

theoretically.
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Fig.8.8. Calculated Tci as a function of ng for the cases of

n, = lollcm-z, 10%2cm™2 ana 3x1012%em™2 in an n-channel

dep

inversion layer on the Si(100) surface under the stress
along the [001] direction. The stress is assumed to be

so0 controlled as to give n1= n2= ns/2. In this system,
Tc2 is always larger than Tcl'
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§9, Discussions

9-1. Summary of Chapter III

A large amount of works have been done on an n-channel
inversion layer at the Si(lOO)/SiO2 interface, mainly because
various guantities of this system such as n_ and <z>i can be
controlled easily by the change of the gate voltage and the
substrate bias and also by the application of the uniaxial
stress. The knowledge obtained in this way permits us to
perform the first-principle calculation of TC. From such a
study of Tc, this system is predicted to show the superconducting
behavior at the temperatures around 1 mK. The superconductivity
is due mainly to the plasmon. Compared with the bulk systems,
the two-dimensional character of the plasmon is shown to be
preferable for the superconductivity. Although the predicted
transition temperature is extremely low, it is within the
observable range and besides, it will be the first direct
proof of the plasmon mechanism of superconductivity, if the
superconductivity is really observed and the calculated dependence

of Tc on n_. ndep and the stress is assured experimentally.

9-2. Fluctuation Effect

Although we have discussed Tc in the mean-field approxima-
tion until now, we cannot neglect the effects of fluctuation in
a two-dimensional system. However, even if there is no true

[107]

transition to the superconducting phase, the system has
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superconducting behaviors near nye The excess conductivity o',
coming from the Cooper pairs which are created thermally in the
normal phase, can reduce the resistivity so much that the system
may be seen to be superconducting. In fact, in the range of

the temperatures where the interactions between thermally activated
Cooper pairs can be neglected, Z.e., in the classical range,

one of the contributions to ¢' is given by

;U;. 31 : Tli
6 2htén T-Ta -’

v/ oy = (9.1)

where we have assumed that TC is much larger than T

1 cg’

N is the normal conductivity, and T, is the relaxation time of
the Z-th subband. In deriving eq.(9.1), we have assumed the

dirty limit condition, that is, T Tc << 1. Equation {(9.1) is

J4 el
similar to that obtained by Aslamazov and Larkin (AL)[IOB] for

a thin metal, which was written by

Merirllogy Lo saailic
32 T Ffol T=ile 7 (9.2)

gl /o=

where Per Egv T, and d are the Fermi wave number, the Fermi

energy, the relaxation time and the depth of the metal, respectively.
The physics in egs.(9.1) and (9.2) is the same and the difference

is only in the numerical factor. This can be understood

readily, because the result of AL can be reproduced by the
time-dependent Ginzburg-Landau theory[log] and it does not matter

whether the motion of electrons perpendicular to the surface is

quantized as in MOS systems, or not as in thin metals. Another
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contribution to ¢' comes from the Maki term, which also gives

the same result as that in a thin metal[llol

except the same
numerical factor. The same is applied to the critical range of
the temteratures and we can obtain all the results of the super-

conducting fluctuation effects in MOS systems by changing the

numerical factor in the corresponding results in thin metals.

9-3. Comment on the Kawaiji's Experiment on the Superconductivity
on the surface of InAs

[33]

Kawaji et al. observed superconducting fluctuation

effects on the surface of a p-type InAs in contact with 8102
experimentally. They also indicated that the phenomena were in
the n-channel inversion layer. 1In the system, however, they
could not control e by the gate voltage, so that they controlled
ny by the amount of N; ion diffused into the oxide part of the
System. The observed transition temperatures, estimated with
the use of the AL term, that is, eq.(9.1), or eq.(9.2), were
given in Fig.9.1 for several samples with different ns.[llll
We have tried to explain the mechanism of the superconductivity,
but the results in §8 shows that TC becomes at most lOX(m*/Kz)
degrees Kelvin, calculated to be quBK, if we use the values of
K = 14.3 and m*= 0.025 of InAs. Thus at present, we cannot
account for the experiment of Kawaji et al. at all.

However, the behavior of Tc in this experiment is quite

similar to those in Figs.8.3 and 8.5. 1In addition, we can

reproduce their result of Tc in the plasmon mechanism quantitatively
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They are represented by open circles,
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if we use the values of m* and k¥ of the order of unity.! THiS, 48
indicated in Fig.9.1 by the solid lines. These values of m* and
kK, however, differ very much from those of InAs. As to the
difference in the value of m*, there are a few possible ex-
planations. One is to assume that the superconductivity is in
the electrons in the second minimum valleys at L-points whose
effective mass is known to be of the order of unity.[llz]

Another is to assume that there is a surface state with a heavy
effective mass and that the electrons in this state are responsible
for the superconductivity. The value of «k is rather difficult

to be explained. But we should remember that the relevant k

in the plasmon mechanism is the dynamic one with the energy of

the order of €cr a@s we have learned often in this thesis. In the
present case, ¢ becomes of the order of 400 meV, that is, the
energy gap between the conduction and the valence bands of InAs,

if we take m* v 1 and ng of the order of 1013cm-2. Therefore,

if we take the dynamical effect of the valence electrons into
account, k may be of the order of unity, in contrast with the
static value of 14.3. It must be noted here that the treatment

of such a dynamical effect is just the same as to take the exciton

effect into account.[23]

In this sense, Kawaji's experiment
might be explained by the combination of the plasmon and the
exciton. But we have to solve many problems, both experimentally

and theoretically, to confirm this speculation, which will be

one of the main problems to be solved in the future.
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9-4. Problem about the High Tc Superconductor

In the last part of the present thesis, we make a highly
speculative discussion on the problem of the high Tc super-
conductor. In all the mechanisms treated in this thesis, TC is
at most of the order of 10X(m*/K2) degrees Kelvin with m* in
the unit of m and hence Tc/sf is almost always less than 0.001.
Since this is the case with the phonon mechanism in usual metallic
superconductors and also in 3He in which paramagnon plays an
important role, it seems to be a common feature of the super-
conductivity and the superfluidity. In fact, this may be
explained physically as follows. The superconducting state is
characterized by a pair coherent state and the conservation of
the total number of particles is broken. This means that there
should be a very large number of particles within the range of
the coherence length EO' Thus, go should be much larger than
the interparticle spacing ry- Because of ro/i-;0 N Tc/ef, Tc/ef
is always small in the pair condensed state.

If we take these results into account, it seems very difficult
to obtain a superconductor with TC larger than 100 K, if the
carrier of the system is an electron. One possible way to have
a high Tc superconductor is to make a system of carriers with
a much heavier mass than that of electrons, for example, a system
of proton-gas, superconducting. But this kind of systems seems

very difficult to be obtained here on our earth.
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SUMMARY

In the present thesis, a new method of calculating the super-
conducting transition temperature T, is developed. This method
is applicable to any kind of materials, provided that the weak-
coupling approximation is satisfied. In addition, no adjustable
parameters are introduced and we can make a first-principle
calculation of Tc' With the use of this method, we can determine
the mechanism of superconductivity in a given material, if its
normal properties are known well.

There are various systems to which we would like to apply
this method, but in this thesis, we have treated low-carrier-
density systems such as degenerate semiconductors and investigate
the roles of the Coulomb interaction in superconductivity, mainly
because the contribution of the Coulomb interaction, in particular,
that of the plasmon, has never been appreciated enough.

In chapter I, we have discussed the possibility of super-
conductivity in the electron-gas system with the aid of the
plasmon and reduced the problem of the occurrence of the plasmon
mechanism of superconductivity to the problem what is the ground
state of an electron assembly in the jellium model, in case the
superconductivity is not considered at all. If the ground state

of the system having ro larger than six is normal metallic one
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with a well-defined Fermi surface, the plasmon mechanism of super-
conductivity appears. We also find that Tc can be evaluated well
in the RPA.

In chapter II, the superconductivity in an n-type semi-
conducting SrTiO3 has been investigated as an example of the real
system in which the plasmon plays an important role. The observed
results of the carrier-density-dependent Tc and also of the stress
effects on T, are explained quantitatively in the plasmon-ferro-
electric soft phonon mechanism of superconductivity.

As a possible system to become superconducting only with
the aid of the plasmon, we have treated an n-channel inversion
layer at the Si(lOO)/SiO2 interface in chapter III. This system
is predicted to show the superconducting behavior at the temperatures
around 1 mK for the carrier density of the order of lollcm-z.

The investigations in chapters II and III have also given
us a knowledge about the interrelation between the plasmon and
other modes such as pﬁonons and acoustic plasmons in super-
conductivity. When the carrier density is very low and consequently
every mode has an excitation energy larger than the Fermi energy,
only the plasmon which induces a long-range attractive potential
between the Cooper pair contributes to superconductivity. As the
carrier density is increased, other modes begin to play a role in
superconductivity, while the role of the plasmon decreases. As a
result, superconductivity in a high-carrier-density system is
brought about mainly with the aid of the modes such as phonons and
acoustic plasmons which give rise to a short-range attractive

potential between the Cooper pair.
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