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Foreword

I was personally drawn into the study of graphite intercalation
compounds because of the findings of superconductivity in KCg at
Bell Labs. 1 pursued research in the field of graphene intercalation
compounds for a 15-year period starting in 1973. It was known in
1947 that a single layer of graphene was unusual in having a linear
E(k) dispersion relation, whereas other materials studied prior to
1960 had quadratic carrier dispersion relations. This indicated that
single-layer and few-layer sp? carbon materials based on graphene
would have other electronic properties different from conventional
semiconducting materials. My own background, when [ started the
study of carbon-based materials, wasinsuperconductivity,and for this
reason | have been interested in the possibility of superconductivity
existing in carbon materials. Consequently, in the 1960s, we did
some preliminary magneto-optic studies on superconducting KCg as
suggested by Ted Geballe, an author on the 1965 paper by the Bell
Labs group on superconducting KCg. Added interest to the field was
provided by the strong statements made by Bernt Matthias starting
in the 1950s to the effect that magnetism and superconductivity
could not coexist. Matthias was an early pioneer in the development
of many new type II superconductors and became a legend in the
field. He was a young professor at the University of Chicago when
I was there as a graduate student in the 1950s. His lack of interest
in carbon-based superconductors discouraged many people from
doing magnetic field studies on carbon-based superconductors. But
many researchers did research on magnetism and superconductivity,
especially after high-T, superconductivity was discovered in 1986.
Junji Haruyama was one man not deterred by Matthias, and he
decided to study both magnetism and superconductivity in carbon-
based materials in his early career. He has pursued these studies since
his early career and has become a major author in the field. In the
last decade, research on nanocarbon materials has blossomed and
currently, they materials are the focus of much interest. Therefore, a
book on the current status of superconducting nanocarbons would be
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of interest to this large community of potential readers. In this book,
Junji Haruyama presents areview of the current understanding of this
field based on his own research and that of others prominent in the
field, emphasizing the special properties found in superconducting
nanocarbons. The book also covers a broad range of other materials,
presently an area of interesting developments.

Mildred Dresselhaus
Massachusetts Institute of Technology
Autumn 2014



Preface

Superconductors (SCs) are attractive materials in all respects for any
community, especially academia and industry. They provide a deep
insight into the physical properties of the condensed matter and also
have useful applications as ultra-low-power-dissipation systems that
can help resolve the present energy problems. Various types of SCs
have been found to date. With respect to high transition temperature
(T,) over 40 K, CuO,-based SCs and recently found Fe-based SCs have
attracted considerable attention.

In particular, the progress of new carbon-based SCs (CBSCs) has
been significant over the past decade. CBSCs had been investigated
for a long time, especially in graphite-intercalated compounds
(GICs). However, the T, of CBSCs had been below only 1 K (such as
in GICs), except in alkali metal-doped fullerene clusters, until 2004,
when a Russian group discovered that doping diamond heavily with
boron could result in realizing T, = 4 K. This was amazing because
until then diamond had been basically considered a wide-bandgap
semiconductor or insulator. The following year, a Cambridge group
found that calcium-intercalated graphite (CaCg) could be a SC with
T. = 11.5 K. This was again incredible, because T, of GICs had been
below 1 K, as already mentioned. In 2006 and 2008, the editor’s
group from Japan discovered that arrays of entirely end-bonded
multi-walled carbon nanotubes (CNTs) and thin films consisting of
boron-doped single-walled CNTs could be SCs with T.= 12 K. Because
these findings revealed the correlation of superconductivity with
one-dimensional (1D) electronic states and phenomena, they were
highly interesting. Pressure-induced superconductivity at T, = 38 K
was also realized in Cs3Cgq in 2008. In 2013, a team of researchers
from Hong Kong, Massachusetts Institute of Technology, and Japan
demonstrated superconductivity in double-walled CNTs.

More findings about new CBSCs have appeared in the past
decade and the field has developed rapidly. A small mass of carbon
atom produces high phonon frequency and high Debye temperature,
which are basically helpful in obtaining high T, according to the
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Bardeen-Cooper-Schrieffer (BCS) theory. Moreover, different
types of CB materials exhibit different physical origins for
superconductivity, such as heavy carrier doping, 1D electronic states,
coupling of intercalated foreign-atom layer with graphene layer, and
Mott transition.

In particular, 1D physical properties of CNTs (such as
Tomonaga-Luttinger liquid) obstruct the development of high-T,
superconductivity in some cases; however, a high T, can be
theoretically obtained if the 1D properties such as infinite 1D
electronic density of states and coupling of a specified phonon mode
(radial breathing phonon) with g-m electrons are effectively used. A
T, even higher than 60 K has been predicted in CNTs by a Harvard
group. Moreover, a theoretical study on Be- and Mg-intercalated
graphite by a Japanese group also predicts T, > 60 K. Therefore,
it is highly expected that new CBSCs would open doors to high-T,
superconductivity as the third material group, following Cu0,- and
Fe-based SCs, although the current highest T, is still lower than 20 K
except for the T, of Cs3Cq,.

With 11 chapters authored by world-leading scientists, this book
describes the basic physics and recent advances in experiments
and theory of new CBSCs, such as diamond, GICs, graphene, CNTs,
and silicon carbide, and discusses the above-mentioned issues with
focus on superconductivity in CNTs.

I would like to thank all the contributors, without whose efforts
this book would not have been possible. Unfortunately, Prof. Nikolai
B. Kopnin, who is an author of the graphene superconductivity
chapter, passed away on October 20, 2013, during a lecturing trip to
Rome. I pray for the repose of his soul.

I hope this book will be a useful tool for students as well as
experts who are trying to meet the challenge of achieving high-T,
superconductivity.

Junji Haruyama
Aoyama Gakuin University, Japan
Autumn 2014



Chapter 8

Theory for Reliable First-Principles
Prediction of the Superconducting
Transition Temperature

Yasutami Takada
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
takada@issp.u-tokyo.ac.jp

A review is given for the theoretical framework to give a reliable
prediction of the superconducting transition temperature (T from
first principles, together with a practical strategy for its application
to actual materials with illustrations of the results of T, calculated
for superconductors in the weak-coupling region like the alkali- and
alkaline-earth-intercalated graphites as well as those in the strong-
coupling region like the alkali-doped fullerides.

8.1 Introduction

In quantum mechanics, a ground state is determined through a
compromise between the kinetic energy (which makes particles
itinerant) and the potential energy (which makes them localized). If
the latter includes the interaction between particles, there appears
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Edited by Junji Haruyama
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a further complication due to their correlated motion. In elucidating
the microscopic mechanism of superconductivity, this intrinsic
complexity in quantum mechanics cannot be avoided but is even more
intensified, specifically because superconductivity is a phenomenon
in which an assembly of electrons, negatively charged particles with
one-half spin, goes into the pair-condensed phase as a consequence
of the dominance of some effective attractions between electrons
mediated by either phonons, plasmons, spin-fluctuations, or orbital-
fluctuations over the short-range Coulomb repulsions, indicating
the necessity of deeply understanding and carefully investigating
the physics of this charge-spin-phonon (-orbital) complex before
making a reliable evaluation of the transition temperature T, of this
second-order phase transition. Thus one would imagine that the
task of reliably calculating T, must be formidably difficult, but the
ultimate goal in the theoretical study of high-T, superconductivity
should be to construct a good theoretical framework for an accurate
prediction of T,; without such a theoretical tool, we could never
conduct a research directly and intimately touched with the most
salient feature of high-T, materials, namely, the very feature that T,
becomes very high in those materials.

McMillan was the first to provide a rather successful scheme
for predicting T, in the phonon mechanism of superconductivity,
starting from the microscopic electron-phonon coupled
Hamiltonian. The scheme is known as the McMillan’s formula [1],

which was revised later by Allen and Dynes [2-4]. The formulae,

both original and revised, are derived from the Eliashberg theory
of superconductivity [5] and the task of a microscopic calculation
of T, in this framework is reduced to the evaluation of the so-called
Eliashberg function o?F(w) from the first-principles Hamiltonian,
where F(@) is the phonon density of states which may be observed
by neutron diffraction. This function o?F(w) enables us to obtain
both the nondimensional electron-phonon coupling constant A
and the average phonon energy ay, through which we can give a
first-principles prediction of T, with an additional introduction of a
phenomenological parameter " (the Coulomb pseudopotential [6])
for the purpose of roughly estimating the effect of the short-range
Coulomb repulsion between electrons on T..

At present, this framework is usually regarded as the standard
one for making a first-principles prediction of T, and widely used.
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In fact, the superconducting mechanism of many (so-called weakly
correlated) superconductors is believed to be clarified by employing
this scheme. The key phonon modes to bring about superconductivity
are identified by investigating the structure of o?F(w). We can
mention that superconductivity in MgB, with T, = 39 K provides a
very good example [7-10] to illustrate the power of this scheme.
The case of CaCg with T, =11.5 K seems to constitute another recent
example [11,12].

In spite of these and many other successful examples, however,
thisis notconsidered to be our ultimate scheme for calculating T, from
first principles, primarily because a phenomenological parameter u”
isincluded in the theory. Actually, it cannot be regarded as the method
of predicting T, in the true sense of the word, if the parameter y" is
determined soas toreproduce the observed T,. Besides, aslongas 4"is
employed to avoid a serious investigation of the effects of the Coulomb
repulsion on superconductivity, this scheme cannot be applied to
strongly correlated superconductors such as the high-T, cuprates.
Even in weakly or moderately correlated superconductors, this
scheme cannot treat superconductivity originating from the Coulomb
repulsion via charge, spin, and/or orbital fluctuations (namely, the
electronic mechanism including the plasmon mechanism [13,14]).
Furthermore, in this scheme, we cannot investigate the competition
or the coexistence (or even the mutual enhancement due to the
quantum-mechanical constructive interference effect) between the
phonon and the electronic mechanisms.

The validity of the concept of u’ is closely related to that of
the Eliashberg theory itself; the theory is valid only if the Fermi
energy of the superconducting electronic system, Ep is much
larger than @y Note that under the condition of Eg 3> w,, the
dynamical response time for the phonon-mediated attraction «p’
is much slower than that for the Coulomb repulsion Eg!, precluding
any possible interference effects between two interactions, so
that physically it is very plausible to separate them. After this
separation, the Coulomb part (which was not anticipated to play
a positive role in the Cooper-pair formation) has been simply
treated in terms of a single parameter y". Thus, for the purpose
of searching for some positive role of the Coulomb repulsion in
superconductivity, the concept of ¢’ is irrelevant from the outset
of the whole theory.

195
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As for the condition of Eg 3> wy, it must also be noted that such
a condition is violated in some recently discovered superconductors
in the phonon mechanism including the alkali-doped fullerenes with
T.=18-38 K [15-18]. Once it is violated, we need to include higher-
order corrections in the electron-phonon coupling (or the so-called
vertex corrections I') in calculating the phonon-mediated attractive
interaction [19]. Then, it is by no means clear whether we can fully
treat the overall effect of various phonons in terms of the sum of
the contribution from each phonon. This implies that the Eliashberg
function o?F(w) will not be appropriate enough to describe the
phonon-mediated attraction because of possible interference effects
among virtually-excited different phonon modes. As a consequence,
A will not be simply the sum of 4; the contribution from the ith
phonon, unless 4; is small enough to validate the whole calculation
in lowest-order perturbation.

If the condition of Ep 3> wy is violated, especially if E is
about the same as @, another complication occurs in treating
the screening effect of the conduction electrons. In the usual
calculation scheme from first principles, the static screening is
assumed in calculating o?F(w), but it does not reflect the actual
screening process working during the formation of Cooper pairs.
This subtle problem of screening is, of course, also closely related
to the problem of the first-principles determination of 4" and we
will not be able to solve these problems unambiguously without
confronting with a difficult task of treating both the Coulomb
repulsion and the phonon-mediated attraction on the same footing
in the calculation of the microscopic dynamical electron-electron
effective interaction V.

In order to overcome the above-mentioned problems inherently
associated with the Eliashberg theory, the first and natural option
would be to improve on it by considering both the gap equation and
the electron-electron effective interaction V in entire energy- and
momentum-space with properly including the vertex corrections I'
in Vand without separating the Coulomb repulsion from V. However,
this will not be easily accomplished at least in the near future, partly
because the demand for computational resources becomes too much
in the solution of the full non-local and dynamical gap equation and
partly because no controlled approximation scheme has been known
for I for the superconducting state. (Note that the controlled scheme
is known for the normal state [20,21].)
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Fortunately, an alternative option has already been proposed
by the extension of the density functional theory (DFT) to treat a
superconducting state [22,23]. This theory provides a formally exact
framework for calculating T from first principles by the solution of the
gap equation only in momentum-space, setting aside the calculation
of other physical quantities except for the one-electron density n(r).
Note that the effect of the Coulomb repulsion is properly included
in this formulation without resort to the concept of u’. Therefore,
we shall begin with making a very brief review of this DFT for
superconductors (SCDFT) in Section 8.2. We shall point out that the
central quantity in this framework is the pairing interaction K. Then
in Section 8.3, we shall infer a concrete formula for K defined in terms
of the Kohn-Sham (KS) orbitals in an inhomogeneous electron gas by
reconsidering the gap equation for the homogeneous electron gas in
the weak-coupling region with use of the Green's function method.
The formula has not been proposed so far in the literature in SCDFT,
but by its application to superconductivity in the alkali- and alkaline-
earth-intercalated graphites [24,25], it turns out that this is indeed
a very good approximate functional form for K. A prediction for the
optimum value of T, by using this functional form will be given for this
class of materials. In Section 8.4, we shall consider a formula for K in
the opposite limit, namely, in the strong-coupling region, especially
for such superconductors with short coherence lengths as the alkali-
doped fullerides [26]. By interpolating the formulae for K in these two
limits, we shall propose a new functional form for K which is supposed
to work well in the whole range of the coupling strength. The results
of T, obtained by its application to the fullerene superconductors and
related materials will be shown in the last subsection of this section.
Finally in Section 8.5, we shall conclude this short article, together with
discussing the direction of future research.

8.2 SCDFT: Density Functional Theory
for Superconductors

8.2.1 Hohenberg—-Kohn-Sham Theorem

According to the basic theorem in the DFT due to Hohenberg and
Kohn [27], all the physical quantities of an interacting electron
system are uniquely determined, once its electronic density in

197
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the ground state n(r) is specified. This implies that every quantity
including the exchange-correlation energy F,. may be considered
as a unique functional of n(r). The ground-state density n(r) itself
can be determined by the calculation of the ground-state electronic
density of the corresponding non-interacting reference system that
is stipulated in terms of the KS equation [28]. The concept of the
non-interacting reference system is of central importance in the KS
algorithm and the core quantity in the KS equation is the exchange-
correlation potential V, (r), which is formally defined as the first-
order functional derivative of F,.[n(r)] with respect to n(r), namely,
Vie(r) = OFyc[n]/dn(r). It must be noted that V,(r) as well as each
one-electronic wavefunction at ith level (usually called as “ith KS
orbital”) with its energy eigenvalue g in the KS equation has no direct
physical relevance; they are merely introduced for the mathematical
convenience so as to obtain the exact n(r) in the real many-electron
system by exploitation of its one-to-one correspondence to the non-
interacting reference system.

This basic Hohenberg-Kohn theorem can be applied not only
to the normal ground state but also to the ordered one on the
understanding that the order parameter itself in the ordered state
is regarded as a functional of n(r). In providing some approximate
functional form for F,.[n] in actual calculations, however, it would
be more convenient to treat the order parameter as an additional
independent variable. For example, in considering the system with
a collinear magnetic order, we usually employ the spin-dependent
scheme in which the fundamental variable is not n(r) but the
spin-decomposed density n,(r), leading to the spin-polarized
exchange-correlation energy functional F,[n,], based on which the
spin-dependent exchange-correlation potential is defined to specify
the spin-dependent KS equation for determining ny(r) from first
principles.

8.2.2 Gap Equation in SCDFT

In an essentially similar way, in treating superconductivity in
the framework of DFT, it would be better to construct the energy
functional with employing both n(r) and the electron-pair density
(or the superconducting order parameter) #(r,r’)(= (‘PT ()Y, (r')))
as basic variables [22,23], leading to the pair density-dependent
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exchange-correlation energy functional F,.[n(r), x(r, r')], where
Y,(r) is the annihilation operator of o-spin electron field at
position r. In accordance with this addition of the order parameter
as a fundamental variable to DFT, not only the exchange-correlation
potential V,.(r) but also the exchange-correlation pair-potential
A (r, t') = =6F,[n, x1/6x (v, I) appear in an extended KS equation.
A beautiful point in this DFT for superconductors (SCDFT) is
that the extended KS equation can be written in the form of the
Bogoliubov-de Gennes equation appearing in the conventional
theory for inhomogeneous superconductors [29]. Just as is the case
with V,(r), A.(r, r) has no direct physical meaning, but in principle,
if the exact form of F,[n, ¥] is known, the solution of the extended
KS equation gives us the exact result for y(r, r’), containing all the
effects of the Coulomb repulsion including the one usually treated
phenomenologically through the concept of 4". As a result, we can
determine the exact T, by the calculation of the highest temperature
below which a non-zero solution for y(r, r’) can be found.

In this framework of SCDFT, we can formally write down the
fundamental gap equation to determine T, exactly as

; =—z—tanh Ky (8.1)

where A; is the gap function associated with jth KS orbital. In
just the same way as its energy eigenvalue & (which is measured
relative to the chemical potential), A; is not the quantity to be
observed experimentally but just introduced for the mathematical
convenience so as to obtain the exact T, by solving this BCS-type
equation, Eq. (8.1). Similarly, the pairing interaction Kj;;, defined as
the second-order functional derivative of F,[n, ¥] with respect to ¥’
and y, has not any direct physical meaning, either, although this is a
quantity of primary importance in this gap equation or even in the
whole framework of SCDFT.

Three comments are in the following order: (i) The functional
derivatives of F,.[n, ¥] might not be well-defined, as anticipated by
remembering the notorious energy-gap problem in semiconductors
and insulators [30-32), but as is ordinarily the case, we shall assume

Throughout this article, we use units in which i = kg =

199



200

Theory for Reliable First-Principles Prediction of T,

that Kj; is a well-defined quantity. (ii) In this formal derivation in
SCDFT, the dynamical (or w-dependent) nature in the electron-
electron multiple scatterings does not manifest itself in either the
gap equation or the pairing interaction, in sharp contrast with the
Eliashbergtheory.For thisreason, many people castdoubton whether
the physics leading to 4 is actually taken into account in SCDFT.
However, due to the fact that there is a very good correspondence
between this gap equation and the one in the GyW, approximation
to the Elishaberg theory, as will be shown in the next section, we
find that it is possible to include the full dynamical processes in the
Cooper-pair formation in the framework of SCDFT, as long as the form
of Ky is properly chosen. (iii) At T= T, K, is evaluated at y=0. Thus
Kjy must be a functional of only the normal-state electronic density
n(r). Note that each KS orbital, j or j’, determined in the normal state
may be regarded as a functional of n(r), justifying the view that Ky at
T=T,is eventually a functional of n(r) in the normal state.

8.2.3 Application and Discussion

This formal framework of SCDFT was not applied to actual
superconductors before the year 2005 when an attempt was made
to provide a concrete approximate form for F,.[n, ] in which the
contribution from the phonon-mediated attraction was explicitly
included up to the level of the Eliashberg theory [33]. Since then
many (but mostly weakly correlated) superconductors have been
analyzed rather successfully in this framework [34-39].

In the judgement of the present author, the presently available
form for F,[n, #] or the one for Ky contains the information
equivalent to that included in the Eliashberg theory for the part
of the phonon-mediated attraction, indicating that no vertex
corrections are considered in this treatment (amounting to the
very insufficient treatment of the strong polaronic effect), while
for the part of the Coulomb repulsion, it contains only very crude
physics; the screening effect is treated in the Thomas-Fermi
static-screening approximation, or the result in the random phase
approximation (RPA) only in the static and the long-wavelength limit,
neglecting both the dynamical and non-local feature in the effects
of the Coulomb repulsion. This clearly indicates that the Coulomb
repulsion is not treated on the same footing as the phonon-mediated
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attraction and this approximation for the Coulomb part will be just
good for describing the physics represented by x4 at usual metallic
densities (or ry = 2 with r; the conventional non-dimensional
density parameter) from first principles, but it fails to take care of
the detailed dynamical nature of the screening effect, especially, the
positive role of the plasmons in superconductivity for lower densities
(or larger r) [13,14]. Furthermore, the presently available form for
FyIn, 2] or Ky does not allow to discuss other types of the electronic
mechanisms such as the spin-fluctuation one, either. In view of
these fundamental problems, it is absolutely necessary to derive a
much better approximate functional form for K for the purpose of
investigating the electronic mechanisms in the absence/presence of
the phonon mechanism.

It would be appropriate here to make rather a general comment
on numerical errors. Currently, calculations of the normal-state
properties are done in either the local-density approximation (LDA)
or the generalized-gradient approximation (GGA) [40] to F,.[n(r)]
in DFT. We usually anticipate that errors in the calculated results
are of the order of 1 eV and 0.3 eV for LDA and GGA, respectively,
and those errors are much larger than that expected in quantum
chemistry (=0.05 eV). Now in the usual procedure in SCDFT, the
calculation of T, (which is of the order of 0.001 eV in general) is
done simultaneously with that of the normal state and thus the
error for T. might be of the same order as that for the normal
state properties, implying that it might become much larger than
T itself.

This unfavorable situation may be avoided, if we take the
following two-stage strategy for the calculation of T, for a family
of superconducting materials in consideration; in the first stage,
combined with available experimental results on the normal
state, we establish a good model system representing this family
of superconductors by making a first-principles band-structure
calculation and then in the second stage, we evaluate T based on the
model system not only for reproducing the experimental T, but also
for suggesting not yet synthesized but promising superconductors
with higher T in this family. In the rest of this article, we shall
discuss two families of the carbon-based superconductors for which
Tcs are calculated and predicted in accordance with this two-stage
strategy.

201



202

Theory for Reliable First-Principles Prediction of T,

8.3 GyW, Approximation with Application
to Graphite Intercalation Compounds

8.3.1 Pairing Interaction in the Weak-Coupling Region

The three-dimensional (3D) homogeneous electron gas has been
known to be a very useful system in constructing a successful
functional form for V, (r) in either LDA or GGA by its study with
use of various powerful many-body techniques including quantum
Monte Carlo simulations. In view of this success, we shall study
superconductivity in the same system with the conventional Green’s
function method in order to infer a good functional form for the
pairing interaction K in Eq. (8.1) that will be exact in the weak-
coupling limit.

In a homogeneous system, momentum p is always a good
quantum number and an electron can be specified by p and
spin o. If we write the electron annihilation operator by Cpo the
Hamiltonian H of the 3D electron-gas system coupled with phonons
is given by

H = He + th
1
= &Chotpo+ 3 222V (9)cpoCy o Cp-qopraor + Hpns
po q#0 pop'c’

(8.2)

where &,(=p?/2 m" - p) is the bare one-electron dispersion relation
with m" the band mass and 4 the chemical potential, Vo(q)(= 4ne?/
£.97%) is the bare Coulomb repulsion with &, the optical dielectric
constant, and Hyj, represents all contributions containing the phonon
operators. For the time being, there is no need of our specifying a
concrete form for Hy,

In the thermal Green's function method, we can treat
superconductivity by introducing the abnormal thermal Green's
function F(p, im,), which is defined at temperature T by

F(piia,)=-[." dze® (T (7l p). (83)

Here w, is the fermion Matsubara frequency, defined by nT(2p + 1)
with an integer p. At T= T, where the second-order superconducting
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phase transition occurs, this function satisfies the following formally
exact gap equation:

F(p.i @y )=-G(p,i @y JG(—p,—i mp)TcE z ] (p:p';i @p | wp’)F (p",i a)p’)’

@, p

(8.4)

where G(p, iw,) is the normal thermal Green’'s function and
J(p,V ;i@,,iwy) is the irreducible electron-electron effective
interaction.

Let us assume that the effect of interaction is weak, so that it would
be enough to retain the terms only in lowest order in the interaction. If
we adopt the same assumption in the calculation of the normal-state
properties in the Green's function approach, we are led to the so-called
GoW, approximation or the one-shot GW approximation in terminology
prevailing in the present-day first-principles calculation community,
where W is the effective interaction between electrons including both
the Coulomb and the phonon-mediated interactions and W, represents
W in RPA. Incidentally, in the same kind of terminology, the Eliashberg
theory corresponds to the GW approximation. Historically, Cohen was
the first to evaluate T, in degenerate semiconductors on the level of the
GoW, approximation [41,42]. Unfortunately the pairing interaction
is not correctly derived in his theory, as explicitly pointed out by the
present author [43] who, instead, by consulting the pertinent work
of Kirzhnits et al. [44], has succeeded in obtaining the correct pairing
interaction [13], the result of which will be reiterated in the following.

In the GyW, approximation, we replace G(p, i@w,) by the bare
one Gy(p, iw,)[= (iw, — &)7'] in Eq. (8.4) and consider the case in
which J(p,p’;iw,,iw,) is well-approximated as a function of only the
variables (p - p’, iw, — iwy) to write

j[p’p’;iwp yiwp’] = V(p_p”ia)p _iwp')’ (8°5]

as is usually the case for W, the effective interaction in RPA, though
we do not intend to confine ourselves to RPA at this stage. By
substituting Eq. (8.5) into Eq. (8.4), we obtain the gap equation in
the GoW, approximation as

F(p,iw,)

= _Go(priwp ]Go('P, —iwp )Tcz 2 V(p - P'§i0)p - iﬂ)p’)F(P',iﬂJp')'
o ¥ (8.6)
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Then, by making an analytic continuation on the @ plane to
transform F(p, ie,) to the retarded function FR(p, @) on the real-w
axis and using the general relation due to the causality principle as

~ dQ 20
VR(q,@)=Vp(q)- | ——————ImVR(q,Q), 8.7

@a)=h@-[, g M e, @)
with 77 a positive infinitesimal, we end up with a gap equation for
FR(p, w). Finally, by taking the imaginary parts in both sides of the
gap equation and integrating over the w variable, we are led to
an equation depending only on the momentum variable p. More
specifically, the equation can be cast into the following BCS-type gap
equation:

8,=-3 2 & (8.8)
P e 26",' 27:: p.p?

where the gap function A, and the pairing interaction K, are,
respectively, defined as

Ap =25 j:dT”’ImFR(p,w), (8.9)

and

«2 _ImVR(p-p’,Q)
Ky =Vo(p-p)+ [ 2do——P" P77
pr =Vo(P-P') J01: Q+lg | +15 |

w2 &1 +1& |
=| =dQ P V(p-p’,iQ).
0 2 (5 1416, (p-p',iQ)

(8.10)

With use of K, ;y thus derived, we can determine T, as an eigenvalue
of Eq. (8.8), indicating that we have obtained a scheme in which T, is
given directly from the microscopic one-electron dispersion relation
& and the effective electron-electron interaction V(q, iQ). Because
there is no need to separate the phonon-mediated attraction from
the Coulomb repulsion in V(q, iQ) and the dynamical nature of the
interaction is fully taken into account, we can properly treat the
physics leading to 4" from first principles with use of this scheme.

The very definition of the gap function A in Eq. (8.9) indicates that
A, does not correspond to the physical energy gap except in the weak-
coupling limit. Similarly, K, is not a physical entity, although Vis the
physical effective interaction. Both quantities are introduced for the
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mathematical convenience so as to make T, invariant in transforming
Eq. (8.4) into Eq. (8.8). The key point here is that we need not solve
the full gap Eq. (8.4) but much simpler one (8.8) in order to obtain T,
in Eq. (8.4). Of course, if we want to know the physical gap function
rather than A, to compare with experiment, we need to solve the full
gap equation, Eq. (8.4), with T, determined by Eq. (8.8).

Although the spin-singlet pairing has been assumed in the
derivation of Eq. (8.8), no assumption is made on the dependence
of the gap function on angular valuables, so that this gap equation
can treat any kind of the pairing anisotropy in the gap function,
indicating that it can be applied to s-wave, d-wave, ..., and even their
mixture like (s+d)-wave superconductors.

Now, let us compare Eq. (8.8) with Eq. (8.1). Since the KS orbitals,
j and J, can be specified by momenta, p and p’, respectively, in a
homogeneous system and & = &y, we may regard that these two
equations are essentially the same, suggesting that we may give
a concrete functional form for Kj; with use of energies of the KS
orbitals, & and g;; as

«2 lejl + 1€ .
L= —y,(iQ). (8.11)

Ko=[ 2do—L7501
om Q? +(lel+1epD

)

Here Vj;(iQ) is the dynamical effective interaction working for
the scattering process from a pair of electrons in (j, j°) orbitals to
another pair in (, j*) orbitals, as schematically shown in Fig. 8.1 (By
j* we mean the time-reversed KS orbital of j.) We should calculate
this V;-(iQ) on the understanding that it must be derived from the
first-principles Hamiltonian expanded with use of a complete set
of the KS orbitals as an orthnormal basis. Together with the gap
equation, Eq. (8.1), and the KS orbitals obtained in the normal state
by the conventional DFT-based method, Eq. (8.11) constitutes a basic
framework for a first-principles calculation of T, for inhomogeneous
weak-coupling superconductors.

8.3.2 Superconductivity in Polar Semiconductors

In order to assess the quality of this basic framework in the GoW,
approximation for calculating T, from the first principle, we have
applied itto polar degenerate semiconductors, specifically, the doped
SrTiO; and compared the calculated results with experiments [43].
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‘ V(q,iQ]' - VI,(iQ)w
pio, piw, Jio, Jio,

p-p'sq
v : i -io, = iQ > v I iQ

>_

py-io,  —p-Ho, JHe, e,
Figure 8.1 Schematicrepresentation of the dynamical effective interaction
Vi (iQ) as inferred from V(q, iQ).

This material is an insulator and exhibits ferroelectricity under
a uniaxial stress of about 0.16 GPa along the [100] direction, but it
turns into an n-type semiconductor by either Nb doping or oxygen
deficiency, whereby the conduction electrons are introduced
in the 3D band of Ti around the ' point with the band mass of
m’ = 1.8 m, (m,: the mass of a free electron). At low temperatures,
superconductivity appears and the observed T, shows interesting
features; T, depends strongly on the electron concentration n and
it is optimized with T, = 0.3 K at n = 10%° cm™3, Its dependence on
the pressure is unsual; T, decreases rather rapidly with hydrostatic
pressures, but it increases with the [100] uniaxial stress, implying
that the superconductivity is brought about by the polar-coupling
phonons associated with the stress-induced ferroelectric phase
transition.

Taking those situations into account, we have assumed that
the material is well represented by a model of the 3D electron-gas
system coupled with polar-optical phonons in which a concrete form
for V(q, iQ2) can be derived in RPA as

4me?
4q,iQ)q?’

with the dielectric function in the electron-optical phonon system
as

V(q,iQ)= (8.12)

2 2
etq,fm=e,,+:“—fno(q.in)+[eo(q)—ew1;)f’;)[+lgz-, (8.13)
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where []y(q, i) is the polarization function in RPA (or the Lindhard
function) for the 3D electron gas, ax(q) is the energy dispersion
of the transverse optical phonon, and g(q) is the static non-local
dielectric function, which is determined with use of the static
dielectric constant & and ax(q) as

»,(0)

w(q) (814

&%(Q)=4

The dispersionless longitudinal-phonon energy @y is related to
the transverse-phonon energy in the long-wavelength limit a(0)
through the Lyddane-Sachs-Teller relation as

@ = \/:‘Z @ (0). (8.15)

By substituting V(q, iQ) in Eq. (8.12) into Eq. (8.10) and using
the experimental data to determine the values of parameters
like & and &, as well as the dispersion relation for w,(q), we have
obtained T, directly from a microscopic model and the results of T,
are in surprisingly good quantitative agreement with experiment, as
shown in Fig. 8.2. The unusual dependence of T, on the pressure is
also reproduced well, though it is not shown here. (For interested
readers, refer to the original paper [43].) This success indicates that
the present framework including the adoption of RPA for calculating
the effective interaction is useful and appropriate at least in the
polar-coupled phonon mechanism in which the contribution from
the long-range part of the interaction dominates over that from the
short-range one.

8.3.3 Graphite Intercalation Compounds

8.3.3.1 Historical survey

The graphite intercalation compounds (GICs) have been investigated
for a long time from physical, chemical, and technological points
of view [47-50]. Among various kinds of GICs, special attention
has been paid to the first-stage metal compounds, mainly because
superconductivity is observed only in this class of GICs, the chemical
formula of which is written as MC,, where M represents either an
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alkali atom (such as Li, K, Rb, and Cs) or an alkaline-earth atom (such
as Ca, Sr, and Yb) and x is 2, 6, or 8. The crystal structure of MC, is
shown in Fig. 8.3(a), in which the metal atom M occupies the same
spot in the framework of a honeycomb lattice at every (x/2) layers
of carbon atoms.

1.0 LB | T LB R LR | T ™" T 7T

Sr TiOa

0.5 ¢ : Experiment

™7 TT7T
PINE IS S}

m*=1-8ms
0_01 saal ! it aal L [ B A W

0.05 0.1 0.5 1 5 10
n (10%%cm™)

Figure 8.2  Calculated results for T, in semiconducting SrTiO; as a function
of the electron density n (the solid curve [43]), together with
the experimental results (the filled circles [45]. See also [46].)

The first discovery of superconductivity in GICs was made in KCg
with the T of 0.15 K in 1965 [51]. In pursuit of higher T,, various
GICs were synthesized, mostly working with the alkali metals and
alkali-metal amalgams as intercalants, from the late 1970s to the
early 1990s [52-59], but only a limited success was achieved at that
time; the highest attained T, was around 2-5 K in the last century.
For example, it is 1.9 K in LiC, [60].

A breakthrough occurred in 2005 when T, went up to
11.5 K in CaC¢ [61,62] (and even to 15.4 K under pressures up to
7.5 GPa [63]). In other alkaline-earth GICs, the values of T, are 6.5 K
and 1.65 K for YbC, [61] and SrC, [64], respectively. Since then, very
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intensive experimental studies have been made in those and related
compounds [62-66]. Theoretical studies have also been performed
mainly by making state-of-the-art first-principles calculations of the
electron-phonon coupling constant 4 to account for the observed
value of T, for each individual superconductor [11,12,34,67]. Those
experimental/theoretical works have elucidated that, although
there are some anisotropic features in the superconducting gap,
the conventional phonon-driven mechanism to bring about s-wave
superconductivity applies to those compounds. This picture of
superconductivity is confirmed by, for example, the observation
of the Ca isotope effect with its exponent a = 0.50, the typical BCS
value [68].

In spite of all those efforts and the existence of such a generally
accepted picture, we need to know more important and fundamental
issues that include:

i. Standard model: Can we understand the mechanism of
superconductivity in both alkali GICs with T, in the range
0.01-1.0 Kand alkaline-earth GICs with T, in the range 1-10 K
from a unified point of view? In other words, is there any
standard model for superconductivity in GICs with T, ranging
over three orders of magnitude?

ii. Key parameters to control T;: What is the actual reason why
T. is enhanced so abruptly (or by about a hundred times) by
just substituting K by Ca the atomic mass of which is almost
the same as that of K? In terms of the standard model, what
are the key controlling physical parameters to bring about
this huge enhancement of T.? This change of T, from KCg
to CaCg is probably the most important issue in exploring
superconductivity across the entire family of GICs.

ili. Optimum T_ Is there any possibility to make a further
enhancement of T, in GICs? If possible, what is the optimum
value of T, expected in the standard model and what kind of
atoms should be intercalated to realize the optimum T, in actual
GICs?

Recently these three issues have been satisfactorily addressed by
the present author [24,25], as shall be explained one by one in the
following three subsections.
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(a) Crystal structure of MCy (b) Model for MCy (x=2, 6, 8)
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(a) Crystal structure of MC,(ix = 2,6,8). The case of x = 6
is illustrated here, in which the metal atoms, Ms, are
arranged in arhombohedral structure with the offystacking
sequence, implying that M occupies the same spot in the
framework of a graphene lattice at every three layers (orat
the distance of 3d with d the distance between the adjacent
graphite layers). (b) Simplified model to represent MC,
superconductors. We consider the attraction between the 3D
electrons in the interlayer band induced by polar-coupled
charge fluctuations of the cation M?* and the anion C-3. (c)
T, in the first-stage alkali- and alkaline-earth-intercalated
graphites plotted as a function of d. The solid circles show
the experimental results, while the crosses the calculated
ones in the GoW, approximation for the model represented
in (b) with suitable values for the parameters such as Z, m",
and ffor each MC,.
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8.3.3.2 Standard model for intercalated graphite
superconductors

The usual DFT-based self-consistent band-structure calculation is
useful in elucidating the electronic structures of GICs in the normal
state, basically because GICs are not strongly correlated materials.
According to such a calculation, no essential qualitative difference
is found between alkali- and alkaline-earth GICs. The main common
features among these GICs may be summarized as follows:

First of all, each intercalant metal atom in MC, acts as a donor and
changes from a neutral atom M to an ion MZ* with valence Z. Then,
the valence electrons released from M will transfer either to the
graphite  bands or the 3D band composed of the intercalant orbitals
and the graphite interlayer states [69-71]. We shall define the factor
fas the branching ratio between these two kinds of bands. Namely, Zf
and Z(1 - f) electrons will go to the w and the 3D bands, respectively.
The electrons in the graphite © bands are characterized by the two-
dimensional (2D) motion with a linear dispersion relation (known
as a Dirac cone in the case of graphene) on the graphite layer.

The dispersion relation of the graphite interlayer band is
very similar to that of the 3D free-electron gas, folded into the
Brillouin zone of the graphite [67]. Thus its energy level is very
high above the Fermi level in the graphite, because the amplitude
of the wavefunction for this band is small on the carbon atoms. In
MC,, on the other hand, the cation M# is located in the interlayer
position where the amplitude of the wavefunctions is large, lowering
the energy level of the interlayer band below the Fermi level. The
dispersion of the interlayer band is modified from that of the free-
electron gas because of the hybridization with the orbitals associated
with M, but generally it is well approximated by &, = p2/2m” - Eg
with an appropriate choice of the effective band mass m” and the
Fermi energy Ep. Here the value of m”" depends on M; in alkali GICs,
the hybridization occurs with s-orbitals, allowing us to consider
that m" = m,, while in alkaline-earth GICs, the hybridization with
d-orbitals contributes much, leading to m" = 3 m,, in both CaCq and
YbCg, as revealed by the band-structure calculation [11,12].

The value of f, which determines the branching ratio Zf: Z(1 - f),
can be obtained by the self-consistent band-structure calculation.
In KCg, for example, it is known that fis around 0.6 [72,73]. On the
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other hand, fis about 0.16 in CaCg, making the electron density in
the 3D band n increase very much [12]. This increase in n is easily
understood by the fact that the energy level of the interlayer band is
much lower with Ca?* than with K*. The concrete numbers for n are
3.5x10%! cm™3 and 2.4 x 1022 cm™3 for KCg and CaCg, respectively, in
which the difference in both d and x is also taking into account.

As inferred from experiments [48,67] and also from the
comparison of T, calculated for each band [74], it has been concluded
that only the 3D interlayer band is responsible for superconductivity.
Note that LiC¢ does not exhibit superconductivity because no carriers
are present in the 3D interlayer band, although the properties of LiCg
are generally very similar to those of other superconducting GICs in
the normal state.

With the above-mentioned common features in mind, we can
think of a simple model of a 3D electron gas coupled with phonons
for the GIC superconductors, which is schematically shown in
Fig. 8.3(b). In order to give some idea about the mechanism to induce
an attraction between 3D electrons in this model, let us imagine
how each conducting 3D electron sees the charge distribution of the
system. First of all, there are positively charged metallic ions M?*
with its density ny, given by ny, =4/3/3a%dx, where a is the bond
length between C atoms on the graphite layer (which is 1.419 A).
Note that with use of this ny, the density of the 3D electrons n is
given by (1 - f)Zny. There are also negatively charged carbon ions C-¢
with é given by 6= fZ/x on the average. Therefore, the 3D electrons
will feel a large electric field of the polarization wave coming from
oscillations of M?* and C~%ions created by either out-of-phase optical
or in-phase acoustic phonons.

Although there are some additional complications originating
from the combined contributions from both optical and acoustic
modes in the layered-lattice system, this coupling of an electron with
the polar phonons is essentially similar to the one we have already
considered in the previous subsection. Thus, it is straightforward
to derive the effective interaction V(q, i€2) in RPA in which the bare
Coulomb repulsion and the polar-phonon-mediated attraction are
treated on the same footing with the screening effects of both the 2D
and 3D electrons. A concrete form for V(q, iQ) will not be given here,
but for its detailed derivation we refer to the original paper [74]
in which exactly the same model as presented in Fig. 8.3(b) was
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proposed in as early as 1982 by the present author for analyzing
superconductivity in alkali GICs.

8.3.3.3 Key physical parameters to control superconductivity

We have evaluated T, from the first principle by using V(q, iQ?) thus
obtained to solve the gap equation (8.8). In Fig. 8.3(c), the calculated
results of T, for various MC, are plotted by the crosses with the choice
of suitable values for the parameters such as Z, m’, and f for each
material. As we see, the agreement between theory and experiment
is quite excellent across the entire family of GICs, implying that
our simple model may well be regarded as the standard one for
describing the mechanism of superconductivity in GICs.

In order to identify the controlling physical parameters to
enhance T, in CaCq by hundred times from that in KCg, let us compare
the values for the physical parameters between the two materials:
(i) The valence Z; because the valence changes from monovalence
to divalence, the value of Z in CaCg is doubled to make the bare
polar phonon-mediated attraction (which is in proportion to Z%)
stronger by four times. (ii) The interlayer distance d; it decreases
from 5.42 A to 4.524 A, so that the 3D electron density n increases in
CaCg. (iii) The factor fto determine the branching ratio; it decreases
from about 0.6 to 0.16, which also makes a further increase in n. (iv)
The effective band mass for the 3D interlayer band m’; it increases
from m, to about 3m,, leading to a large enhancement of the density
of states at the Fermi level. (v) The atomic number of the ion 4;
it changes only from 39.1 in K to 40.1 in Ca. Thus the energies of
phonons hardly change.

We have recalculated T, by shifting each parameter, one by
one, from the above-mentioned respective physical value and have
found that two parameters, namely, Z and m’, are very important in
controlling the overall magnitude of T,. In fact, T, is enhanced by one
order of magnitude from that in KCg by doubling ZfromZ=1to Z=2
with m” kept to be m,. A further enhancement of T, by another one
order is seen by tripling m’ from m, to 3m,, with Z kept to be Z = 2.
Thus, we may conclude that the enhancement of T, in CaCg by about
a hundred times from that in KCg is brought about by the combined
effects of doubling Z and tripling m". In this respect, the actual value
of m” is very important. Appropriateness of m" = 3m, is confirmed
not only from the band-structure calculations [11,12], but also from
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the measurement of the electronic specfic heat [65] compared with
the corresponding one for KCg [75].

A note will be added here on the case of YbCg; the basic
parameters such as Z, f, and m" for YbCg are about the same as those
for CaCg, according to the band-structure calculation. The only big
difference can be seen in the atomic mass; Yb (in which A= 173.0) is
much heavier than that of Ca by about four times, indicating weaker
couplings between electrons and polar phonons as just in the case
of comparison between KCg and RbCq or CsCg. In fact, T, for YbC,
becomes about one half of the corresponding result for CaCq, which
agrees well with experiment. One way to understand this difference
is to regard it as an isotope effect with o= 0.5 [11].

8.3.3.4 Prediction of optimum T,

As we have seen so far, our standard model could have predicted
T.=11.5Kfor CaCq in 1982 and it is judged that its predictive power
is very high. Incidentally, the author did not perform the calculation
of T, for CaCg at that time, partly because he did not know a possibility
to synthesize such GICs, but mostly because the calculation cost was
extremely high in those days; a rough estimate shows that there is
acceleration in computers by at least a millon times in the past three
decades. This huge improvement on computational environments is
surely a boost to making such a first-principles calculation of T, in
the GoW, approximation.

We have explored the optimum T, in the whole family of GICs
by widely changing various parameters involved in the microscopic
Hamiltonian of the standard model. Examples of the calculated
results of T, are shown in Fig. 8.4, in which f is fixed to zero, the
optimum condition to raise T,, and d is tentatively taken as 4.0 A.
From this exploration, we find that the most important parameter to
enhance T, is m”. In particular, we need m" larger than at least 2meto
obtain T, over 10 K, irrespective of any choice of other parameters,
and T, is optimized for m" in the range (10-20)m,. The optimized
T, depends rather strongly on the parameters to control the polar-
coupling strength such as Z and the atomic mass 4; if we choose a
trivalent light atom such as boron to make ,(0) large, the optimum
T, is about 100 K, but the problem about the light atoms is that m"
will never become heavy due to the absence of either d or felectrons.
Therefore, we do not expect that T, would become much larger than
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10 K, even if BeC, or BC, were synthesized. From this perspective, it
will be much better to intercalate Ti or V, rather than Be or B. Taking
all these points into account, we suggest synthesizing three-element
GICs providing a heavy 3D electron system by the introduction of
heavy atoms into a light-atom polar-crystal environment.

AT |

T.(K)

VC, (% =5)

TiC_(Z=4)

0 10 20 30 40 50
m*/m,
Figure 8.4  Prediction of T, as a function of m’ for various GICs in pursuit
of optimum T We assume the fractional factor f=0.

8.4 Strong-Coupling Approach
with Application to Fullerides

8.4.1 Coherence Length

In the BCS theory for superconductivity which is applicable to
superconductors in the weak-coupling region, T, is directly related
to the coherence length & which characterizes the spatial extent
of the wave function representing the bound state of a Cooper
pair at zero temperature. More concretely, the relation between
them is expressed as T./Er = 2e¥/n?(p&y)~! = 0.361/ppé&, with
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7(=0.57721--') the Euler-Mascheroni constant and py the Fermi
wave number. Because p;! is in proportion to the lattice constant
ay, the relation is rewritten into the form as

aq,
—£=0.0735-2 (8.16)
Eg %

for a monovalent metal in the fcc lattice structure. (For other valence
and/or crystal structure, the coefficient of 0.0735 changes, but it
always remains in the same order of magnitude.) For usual elemental
superconductors, T./Eg is of the order of 10~* and thus &, is about a
thousand times larger than ag, validating the approach in momentum
space. On the other hand, the relation in Eq. (8.16) implies that high
T. is inevitably associated with short &, In fact, & is observed as only
a few nm or less, i.e,, of the same order of ay in many of the recently
synthesized high-T, superconductors [see, e.g., Ref. 76] such as the
cuprates, the alkali-doped Cg, and MgB,.

A similar message can be obtained through the so-called
Uemura plot [77-79], according to which there is a universal
relation of T./E¢ = 0.04 for a wide variety of strong-coupling
superconductors. If this relation is put into Eq. (8.16), we
obtain & = 2ay. Furthermore, if we think of the Bose-Einstein
condensation (BEC) for an assembly of very tightly bound pairs
of electrons, the condensation temperature (which amounts to
T, in such a system) is given by T./Er = (2/97{(3/2)%)1/3 = 0.218,
where {3/ 2)(= 2.6124---) is the Riemann’s zeta function {(x) at
x = 3/2. This value of T./E; (which must be the optimum value for
fermionic superconductors) suggests & = 0.3 aq. Thus, in treating
superconductivity in the strong-coupling region, we need to
consider a situation of extremely short &, validating the approach
in real space, which is totally different from that of very long &, in
the weak-coupling superconductors.

8.4.2 Pairing Interaction in the Strong-Coupling Region

In view of the above-mentioned difference in &, we shall exploit
the shortness of &, in reformulating the problem of making a
quantitative calculation of T, for strong-coupling superconductors
in the Green's function approach [26]. Let us start with this
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reformulation by considering the dynamical correlation function
for singlet pairing of two electrons in the normal state QR (q,®),
which is defined as

QR(q,)=—i j: deeia—7 ([eiHt et @} 1), (8.17)

where H is the Hamiltonian for a homogeneous electron system
and @, is the electron-pair annihilation operator, defined by
Dy= Cprq C_pi+ In terms of the retarded pairing correlation
function Q (g, a)) we can define T, as the temperature at which
QR (q, ) diverges at q =0 in the static limit (@w— 0) with the decrease
of T.

As shown schematically in Fig. 8.5(a), Q. is conventionally
divided into a sum of terms classified by the number of /s, where /,
which has already appeared in Eq. (8.4), is the irreducible electron-
electron effective interaction including all vertex corrections. Using
Il;c(q, @) the pairing polarization function composed of two full
electron Green'’s functions including all self-energy corrections,
we can express the infinite sum in Fig. 8.5(a) in a quite symbolical
way as

nSC

Qs = VST (8.18)

Then, the divergence in QR (0,&#— 0) occurs at the zero of the
denominator in Eq. (8.18), which provides exactly the same T, as
that obtained through the solution of Eq. (8.4).

Now, instead of using [, we shall consider an alternative
expansion with use of [l o the pairing polarization function
composed of two bare electron Green's functions. As shown
schematically in Fig. 8.5(b), if we introduce the pairing interaction
g by the definition of

1 1

I SC I sc,0

g=J+ : (8.19)

we can rewrite Q. in Eq. (8.18) into another exact form as

1-[sco

= 8.20
Qsc 1+ gnsc,o ( )

217



218

Theory for Reliable First-Principles Prediction of T,

Since we can always calculate [l o easily, the problem of
estimating T, is reduced to the evaluation of § in the limitof w— 0
at q = 0. Note that g does not depend strongly on either q or
in sharp contrast with TIR ;(q,®). In the BCS theory, for example,
g is taken as a constant which represents a weakly attractive
and spatially local interaction working only in the vicinity of the
Fermi level, given that the phonon energy @, is much smaller than
Ey. Then the zero of the denominator in Eq. (8.20) at q = 0 and @
— 0 provides the well-known BCS formula for T, Note also that
the problem of finding the zero of 1+ N & (0, 0) is just the
same as that of solving the gap equation in Eq. (8.6) with replacing

V(p-p’, iw, - iw,) by §.

(@) Qg expanded in reference to J

(b) Q, expanded in reference to g

o990 CNE =T

(c) Q$c in terms of KS orbltals
1/\1 /

(d) 9 in terms of KS orbltals

» .

i 7

Figure8.5  Pair correlation function Q. described in terms of using either (a)
the pairing polarization function [, and theirreducible electron-
electron effective interaction J or (b) the non-interacting pairing
polarization function [sco and the effective interaction g -Bythe
extension of the idea of expanding Q. with use of [Tsco, we show
a scheme to express it in terms of KS orbitals in (c), together with
the schematic representation of gjj, in (d).

Inthe case of short &, we may assume that the essential physics of
electron pairing can be captured even if we treat only a small-cluster
system, as long as the system size is large enough in comparison
with &. Under this assumption, we can take the following procedure
for determining §: First, by representing the values for [0 and 9
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in an N-site system as T1{" s ) and Jy, respectively, we may write the

pairing correlation function for the N-site system st )
nm
(N) - sc,0 (8 21]
sC - N)?® .
1+ g NrI gc(])

in accordance with Eq. (8.20). In general, the exact bulk value g will
be obtained by taking the large-N limit of gy, but expecting that gy,
with a small positive integer N, (for example, N, = 2) is already close
to §, we may estimate g by the relation of

g=- - : (8.22)
oy niy ‘

with Q(N° evaluated rigorously, for example, by exact diagonalization.
Of course, we can determine a better value of g by checking the
saturation behavior of {g, } with the increase of N,.

8.4.3 Interpolation Formula for the Pairing-Interaction
Functional

Based on the knowledge so far obtained, let us speculate an
appropriate functional form for the pairing interaction K in SCDFT.
It would be natural to expand the electron field operator in terms
of the KS orbitals { j)} in an inhomogeneous electron system, so
that we can define the electron-pair operator @; as @; = ¢i¢;» with
|j*) the time-reversed orbital of | j). Then, we can introduce the
pairing polarization function in terms of ®; and ®7. In particular,
we can calculate this quantity in the non-interactiong system [1;
in analogy with [0, as schematically introduced in Fig. 8.5(c). At
the same time, we can define a quantity g,j, as schematically shown
in Fig. 8.5(d).

In the strong-coupling region, we do not expect that this g
exhibits strong dependence on iQ, because the Fermi energy, the
scale for the electron kinetic energy, must be much smaller than the
energy scale representing electron-electron interactions. Inaddition,
g;» does not depend strongly on orbital variables, either, because the
pairing interaction should be short-ranged in real space in line with
the shortness of &,. Thus, we may regard g,.j. as a constant. Then, if
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we take Kj in Eq. (8.1) as gy, we can easily see that both Eq. (8.1)
and the zero of 1+ gﬂ,ngc, ;- provide the same T..

In a more general situation of the intermediate-coupling region,
however, g,, will depend on both iQ and orbital variables. In order
to treat such a situation and also by paying attention to the weak-
coupling situation examined in the previous section, we propose the
functional form for Kj in exactly the same form as that in Eq. (8.11)
with replacing Vj (iQ) by g, (1Q) . Note that this functional form of
Kjy is reduced to gy (0), if gjj,(iQ) does not depend on Q, assuring
us that the framework in SCDFT with this choice of K, provides the
same T as that in the usual Green'’s function approach in the strong-
coupling region. This means that we can successfully take care of both
self-energy and vertex corrections beyond the GoW, approximation
by upgrading Vj;(iQ) to g;,(iQ) in Eq. (8.11).

- 8.4.4 Alkali-Doped Fullerides

8.4.4.1 Aims of this subsection

The fulleride is a molecular crystal with narrow threefold conduction
bands (with the band width W=0.5 eV) derived from the ¢, electronic
levels of each Cgy molecule. With the doping of three alkali atoms
per one C¢y molecule, we obtain the half-filled situation in which
superconductivity occurs with T in the range 18-38 K [15,16] and
the short coherence length &, of only a few molecular units. As for
the mechanism of superconductivity in the alkali-doped fullerides,
phonons are widely believed to play an important role. This belief
is based upon a crude estimate of T in the conventional Eliashberg
theory. In fact, analysis of various experiments with use of this theory
has shown that many aspects of superconductivity in these fullerides
are consistent with a picture of s-wave BCS superconductors with
the Cooper pairs driven by the coupling to the intramolecular high-
frequency phonons in H, symmetry (with the phonon energy ay =
0.2 eV and the non-dimensional electron-phonon coupling constant
A=0.6 for Rb3Cqgg) [17,80,81].

The above picture, however, seems to be too much simplified
and we may raise several fundamental questions. From a theoretical
point of view, one of the serious problems is ill foundation to adopt
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the Eliashberg theory in the fullerides due to the importance of
vertex corrections [19,82]. From an experimental side, the following
four experimental facts have been observed which we cannot easily
understand with use of the Eliashberg theory: (i) The relation
between T, and the lattice constant g, changes remarkably when the
crystal structure changes from the face-centered cubic (fcc) to simple
cubic (sc) lattice by the introduction of Na, a smaller ion compared
to K, Rb, or Cs, as a dopant ion [83]. (ii) The antiferromagnetic (AF)
insulating behavior has been reported in ammoniated K3Cgg, which
is peculiar in the sense that s-wave BCS superconductivity exists in
the vicinity of an AF phase [84]. A similar problem is also seen in the
body-centered cubic A15-structured Cs3Cqq [16]. (iii) The anomalous
13C isotope effect on T, for 50% !3C substitution has been observed,
reflecting the difference between the molecular and atomic mixture
of 12C and 13C atoms [85]. (iv) With the deviation of electron number
per site n from half-filling, T, decreases rapidly in both sides of the
deviation [86].

Although the experiment (i) may be reproduced in the Eliashberg
theory with some judicious choice of parameters, the rest (ii-iv)
cannot be explained even qualitatively in the theory. In addition,
the behavior of T, as a function of n observed in the experiment
(iv) cannot be predicted either by those theories proposed so far
to account for the copper oxide high-T, superconductivity based
on some strong-correlation models, though such models may be
favorable for the explanation of the experiment (ii).

A successful theory for the fullerene superconductors should
not only reproduce these experiments in a coherent fashion but also
clarify the reason why the effect of vertex corrections, even if it is
large, does not manifest itself in many superconducting properties.
In quest of such a theory from a somewhat general viewpoint, the
present author made intensive studies of the Hubbard-Holstein
(HH) model and its extension in the past and successfully explained
all the issues (i-iv) raised above [18,87-91]. In the rest of this
subsection, we shall focus on the first three issues in order to show
how nicely the HH model applies to the fullerides, as far as T, is
concerned. Then we shall explore a possibility to enhance T, in this
class of superconductors by changing the parameters involved in the
model.
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8.4.4.2 The Hubbard-Holstein model

In a molecular crystal, it is a very good approximation to regard
each molecular unit as a “site” in a lattice. We shall adopt this
approximationanddescribe the electron-phononsystemin thealkali-
doped fullerides by a model Hamiltonian H in site representation
in which each site corresponds to each Cg4, molecular unit. Since
the conduction band width is narrow, the intermolecular hopping
integral ¢ must be small, indicating that only the nearest-neighbor
hopping is relevant in modeling the kinetic energy of the system.
Then, it would be appropriate to decompose H into the nearest-
neighbor electron-transfer term H, and the sum of site terms 3;H;
including both the electron-electron and the electron-local phonon
interactions. In order to faithfully represent the threefold degenerate
t1,-conduction bands coupled with eight H, intramolecular Jahn-
Teller (JT) phonons, we would need to include the t;, ® Hy JT
structure in H; as has often been the case [92-95]. In making a
detailed study on the stability of the AF insulating phase, it is known
that this feature of band multiplicity plays a rather crucial role [96],
but in treating superconductivity itself, the band multiplicity is not
considered to be of primary importance [97]. Therefore, we shall
take a simplest possible model, namely, the one-band HH model
to discuss superconductivity from a more general viewpoint that
will be applicable to the whole family of fullerene superconductors
including not only electron-doped but also hole-doped materials
with different JT structures.
The concrete form for H in the HH model is given by

H=-t Y (chcrg+he)+ Y H;, (8.23)
{i.I)o i

with the site term H; written as

H, = —ﬂz N + Unnntl + \/Ea)o Z N, [a,- + a}f)"' Wy a,fa, s (8.24)
(2 o

where (i,i’) represents the nearest-neighbor-site pair, c,, the operator
to annihilate a spin-o electron at site i, 4 the chemical potential,
ng =ctc,, U the on-site (or intramolecular) Coulomb repulsion,
a the nondimensional electron-phonon coupling constant which
is related to the conventional electron-phonon coupling constant
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A through A = aay/tz with ay the optical-phonon energy and z the
coordination number, and a; the operator to annihilate an optical
phonon at site i.

The characteristic features of the fullerenes can be well captured
by an appropriate choice of the parameters involved in this
Hamiltonian. In fact, the narrowness of the conduction band can be
described by the smallness of t of the order of 0.1 eV. The difference
in the crystal structure as well as the effect of band multiplicity can
be well accounted for by a suitable choice of z. The high-frequency
intramolecular optical phonons coupled strongly to electrons
can be treated by considering the local phonons with the energy
ay(=0.2 eV) at each site. The short-range Coulomb potential must be
relevant in the fullerenes due to the proximity to the AF state and it
can be included by the introduction of U. Note that this U is not the
direct Coulomb repulsion between electrons on a carbon atom Uy,
which is of the order of 5-10 eV. Rather it is the sum of Uy, and
the attraction —Up,; due to the electronic polarization effect of 60
n-electrons in the C¢o molecule [98). Because of a strong cancellation
between Uyom and —Upqy, U is expected to be of the order of 0.1 eV,
which is about the same magnitude as that for the phonon-mediated
attraction, —Uy, = -2 0y,

Intensive studies on the ground state in this system by exact
diagonalization of small-size clusters have revealed that the half-filled
HH model exhibits interesting competition among charge-density-
wave (CDW), spin-density-wave (SDW), and superconducting
states [88,90]. We may summarize the results in the following way:
(a) If U-Uyy, is at least smaller than -t, the CDW state composed of
an array of immobile bipolarons is stabilized. (b) If U-Uy, is larger
than ¢, there appears the SDW state which is nothing but the AF state
in this case. (c) Superconductivity appears only in the CDW-SDW
transition region where |U-Upy| is less than t. In this offset situation
of U = Uy, the state may be regarded as an assembly of nearly free
polarons and the main effect of the strong electron-phonon vertex
corrections is found to form a polaron from a bare electron. This
implies that the Eliashberg theory or even the BCS theory is expected
to be accurate enough to describe superconductivity in this system,
if it is applied on the basis of the polaron picture [88,90,99]. In any
case, the intrinsic competition of superconductivity with the AF state
in the half-filled HH model resolves the issue (ii) raised previously.
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Figure8.6 T as a function of the lattice constant a, in the alkali-doped
fullerides and its dependence on the crystal structure. The
solid and the broken curves represent our theoretical results,
while the experimental results are given by square, triangle,
diamond, and circle marks.

In order to address the issue (i), we have applied our framework
to calculate T, to the HH model by estimating § with use ofa cluster as
small as two molecules (i.e., Ny = 2). We have evaluated the variation
of t with the change of the lattice constant aq by fitting the change in
the band width obtained by the band-structure calculation for each
lattice structure [100,101]. More specifically, t is determined by

t=tpp %exp(—d—;&), (8.25)
with d=ag/v2-6.95 A, A = 0.55 A, and the corresponding
parameters, tpy, and dpy, for Rb3Ceq. By choosing tp, = 1.70 ) suitable
for Rb3Cg and the common parameters such as U= 3.81ay, a =2,
and @y = 0.195 eV with reference to band-structure calculations
and relevant experiments, we obtain the results for T, as a function
of ap, which agrees remarkably well with experiment as clearly
demonstrated in Fig. 8.6. Note that in our calculation, the difference
in T; between fcc and sc structures arises mainly from that in the
“effective” lattice coordination number z [81]. This indicates
that z is a key to the resolution of the issue (i). Note also that the
recent experimental result for Cs;Cgo under pressure is also on
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our theoretical curve, if we estimate an appropriate value of a, so
as to reproduce the same volume per one Cq4y molecule for this bcc
A15 structure.

The competing feature between Uy, and U is also identified to be
akey to the resolution of the issue (iii) [89]. The observed anomalous
isotope effect cannot be explained by either the phonon or the
electronic polarization mechanism alone. It can be reproduced,
if both these mechanisms are included simultaneously. Namely,
we need to consider the change in both @y and U induced by the
isotope substitution. The sensitivity of T, to the local change in the
Coulomb potential U is due to the very short-range nature of &, of
this superconductivity.

8.4.4.3 Prospect for room-temperature superconductors

Encouraged by the success in reproducing T, for the alkali-doped
fullerene superconductors by the application of our theoretical
framework to the HH model at half-filling in the nearly offset
situation of U= Uy, we have attempted to explore the optimum value
of T, with the increase of the electron-phonon coupling constant ¢,
whereby U is also increased to keep the offset situation. Examples of
the calculated results of T, are plotted in Fig. 8.7. As is seen, T, goes
beyond 100 K for =3 and it reaches room temperature for o= 4.
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Figure8.7  T.as a function of the lattice constant ay. For electron-doped Cgp
with a = 2, the theoretical curves are drawn, together with the
experimental results. We also give the results for both & =3 and 4
corresponding to (hypothetical) hole-doped Cgp and doped Cze.
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By the band-structure calculation {102], it is known that «
is about three for the hole-doped Cgp in which hole carriers will
be introduced into the h,-valence bands. On the other hand, in
the crystal composed of C34, o will be about four [103), if the Csq
solid is successfully doped to have an enough number of mobile
carriers in the system, although it seems to be a very difficult
task [104].

8.5 Conclusion and Discussion

In this chapter, we have proposed a new functional form for the
pairing interaction K, a key quantity in the gap equation, Eq. (8.1),
to determine T, in the DFT for superconductors. The functional
form is given in Eq. (8.11) with the effective electron electron
interaction Vj (iQ) replaced by gy (iQ) defined schematically in
Fig. 8.5(d). We have assessed the usefulness of this functional form
by its applications to both the weak-coupling superconductors
like the alkali- and alkaline-earth-intercalated graphites and the
strong-coupling superconductors like the alkali-doped fullerides.
We have also explored a possibility to enhance T, up to room
temperature.

The proposed functional form has just opened a challenging
frontier of the research on high-T, superconductivity. Although
we need to improve on the functional form itself by utilizing the
information obtained by its application to a much wider range of
materials, we can think of several ways to make use of this new
theoretical tool. For example, we can make a quantitative assessment
of the effectiveness of each superconducting mechanism, either
phononic or electronic, so far proposed by investigating how much
T, is actually enhanced with the introduction of the mechanism. The
knowledge accumulated by such investigations will pave the way to
reach a room-temperature superconductor.
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